Description: Lemma for basel . The function G goes to zero because it is bounded by 1 / n . (Contributed by Mario Carneiro, 28-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | basel.g | |
|
Assertion | basellem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basel.g | |
|
2 | nnuz | |
|
3 | 1zzd | |
|
4 | ax-1cn | |
|
5 | divcnv | |
|
6 | 4 5 | mp1i | |
7 | nnex | |
|
8 | 7 | mptex | |
9 | 1 8 | eqeltri | |
10 | 9 | a1i | |
11 | oveq2 | |
|
12 | eqid | |
|
13 | ovex | |
|
14 | 11 12 13 | fvmpt | |
15 | 14 | adantl | |
16 | nnrecre | |
|
17 | 16 | adantl | |
18 | 15 17 | eqeltrd | |
19 | oveq2 | |
|
20 | 19 | oveq1d | |
21 | 20 | oveq2d | |
22 | ovex | |
|
23 | 21 1 22 | fvmpt | |
24 | 23 | adantl | |
25 | 2nn | |
|
26 | 25 | a1i | |
27 | nnmulcl | |
|
28 | 26 27 | sylan | |
29 | 28 | peano2nnd | |
30 | 29 | nnrecred | |
31 | 24 30 | eqeltrd | |
32 | nnre | |
|
33 | 32 | adantl | |
34 | 28 | nnred | |
35 | 29 | nnred | |
36 | nnnn0 | |
|
37 | 36 | adantl | |
38 | nn0addge1 | |
|
39 | 33 37 38 | syl2anc | |
40 | 33 | recnd | |
41 | 40 | 2timesd | |
42 | 39 41 | breqtrrd | |
43 | 34 | lep1d | |
44 | 33 34 35 42 43 | letrd | |
45 | nngt0 | |
|
46 | 45 | adantl | |
47 | 29 | nngt0d | |
48 | lerec | |
|
49 | 33 46 35 47 48 | syl22anc | |
50 | 44 49 | mpbid | |
51 | 50 24 15 | 3brtr4d | |
52 | 29 | nnrpd | |
53 | 52 | rpreccld | |
54 | 53 | rpge0d | |
55 | 54 24 | breqtrrd | |
56 | 2 3 6 10 18 31 51 55 | climsqz2 | |
57 | 56 | mptru | |