Metamath Proof Explorer


Theorem basellem6

Description: Lemma for basel . The function G goes to zero because it is bounded by 1 / n . (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypothesis basel.g G=n12n+1
Assertion basellem6 G0

Proof

Step Hyp Ref Expression
1 basel.g G=n12n+1
2 nnuz =1
3 1zzd 1
4 ax-1cn 1
5 divcnv 1n1n0
6 4 5 mp1i n1n0
7 nnex V
8 7 mptex n12n+1V
9 1 8 eqeltri GV
10 9 a1i GV
11 oveq2 n=k1n=1k
12 eqid n1n=n1n
13 ovex 1kV
14 11 12 13 fvmpt kn1nk=1k
15 14 adantl kn1nk=1k
16 nnrecre k1k
17 16 adantl k1k
18 15 17 eqeltrd kn1nk
19 oveq2 n=k2n=2k
20 19 oveq1d n=k2n+1=2k+1
21 20 oveq2d n=k12n+1=12k+1
22 ovex 12k+1V
23 21 1 22 fvmpt kGk=12k+1
24 23 adantl kGk=12k+1
25 2nn 2
26 25 a1i 2
27 nnmulcl 2k2k
28 26 27 sylan k2k
29 28 peano2nnd k2k+1
30 29 nnrecred k12k+1
31 24 30 eqeltrd kGk
32 nnre kk
33 32 adantl kk
34 28 nnred k2k
35 29 nnred k2k+1
36 nnnn0 kk0
37 36 adantl kk0
38 nn0addge1 kk0kk+k
39 33 37 38 syl2anc kkk+k
40 33 recnd kk
41 40 2timesd k2k=k+k
42 39 41 breqtrrd kk2k
43 34 lep1d k2k2k+1
44 33 34 35 42 43 letrd kk2k+1
45 nngt0 k0<k
46 45 adantl k0<k
47 29 nngt0d k0<2k+1
48 lerec k0<k2k+10<2k+1k2k+112k+11k
49 33 46 35 47 48 syl22anc kk2k+112k+11k
50 44 49 mpbid k12k+11k
51 50 24 15 3brtr4d kGkn1nk
52 29 nnrpd k2k+1+
53 52 rpreccld k12k+1+
54 53 rpge0d k012k+1
55 54 24 breqtrrd k0Gk
56 2 3 6 10 18 31 51 55 climsqz2 G0
57 56 mptru G0