Metamath Proof Explorer


Theorem bccbc

Description: The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccbc.c φN0
bccbc.k φK0
Assertion bccbc φNC𝑐K=(NK)

Proof

Step Hyp Ref Expression
1 bccbc.c φN0
2 bccbc.k φK0
3 1 nn0cnd φN
4 3 2 bccval φNC𝑐K=NK_K!
5 4 adantr φK0NNC𝑐K=NK_K!
6 bcfallfac K0N(NK)=NK_K!
7 6 adantl φK0N(NK)=NK_K!
8 5 7 eqtr4d φK0NNC𝑐K=(NK)
9 nn0split N00=0NN+1
10 1 9 syl φ0=0NN+1
11 2 10 eleqtrd φK0NN+1
12 elun K0NN+1K0NKN+1
13 11 12 sylib φK0NKN+1
14 13 orcanai φ¬K0NKN+1
15 eluzle KN+1N+1K
16 15 adantl φKN+1N+1K
17 1 nn0zd φN
18 2 nn0zd φK
19 zltp1le NKN<KN+1K
20 17 18 19 syl2anc φN<KN+1K
21 20 adantr φKN+1N<KN+1K
22 16 21 mpbird φKN+1N<K
23 14 22 syldan φ¬K0NN<K
24 1 nn0ge0d φ0N
25 0zd φ0
26 elfzo N0KN0..^K0NN<K
27 17 25 18 26 syl3anc φN0..^K0NN<K
28 27 biimpar φ0NN<KN0..^K
29 fzoval K0..^K=0K1
30 18 29 syl φ0..^K=0K1
31 30 eleq2d φN0..^KN0K1
32 31 biimpa φN0..^KN0K1
33 3 2 bcc0 φNC𝑐K=0N0K1
34 33 biimpar φN0K1NC𝑐K=0
35 32 34 syldan φN0..^KNC𝑐K=0
36 28 35 syldan φ0NN<KNC𝑐K=0
37 24 36 sylanr1 φφN<KNC𝑐K=0
38 37 anabss5 φN<KNC𝑐K=0
39 23 38 syldan φ¬K0NNC𝑐K=0
40 1 18 jca φN0K
41 bcval3 N0K¬K0N(NK)=0
42 41 3expa N0K¬K0N(NK)=0
43 40 42 sylan φ¬K0N(NK)=0
44 39 43 eqtr4d φ¬K0NNC𝑐K=(NK)
45 8 44 pm2.61dan φNC𝑐K=(NK)