Metamath Proof Explorer


Theorem bezoutlem1

Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014)

Ref Expression
Hypotheses bezout.1 M=z|xyz=Ax+By
bezout.3 φA
bezout.4 φB
Assertion bezoutlem1 φA0AM

Proof

Step Hyp Ref Expression
1 bezout.1 M=z|xyz=Ax+By
2 bezout.3 φA
3 bezout.4 φB
4 fveq2 z=Az=A
5 oveq1 z=Azx=Ax
6 4 5 eqeq12d z=Az=zxA=Ax
7 6 rexbidv z=Axz=zxxA=Ax
8 zre zz
9 1z 1
10 ax-1rid zz1=z
11 10 eqcomd zz=z1
12 oveq2 x=1zx=z1
13 12 rspceeqv 1z=z1xz=zx
14 9 11 13 sylancr zxz=zx
15 eqeq1 z=zz=zxz=zx
16 15 rexbidv z=zxz=zxxz=zx
17 14 16 syl5ibrcom zz=zxz=zx
18 neg1z 1
19 recn zz
20 19 mulm1d z-1z=z
21 neg1cn 1
22 mulcom 1z-1z=z-1
23 21 19 22 sylancr z-1z=z-1
24 20 23 eqtr3d zz=z-1
25 oveq2 x=1zx=z-1
26 25 rspceeqv 1z=z-1xz=zx
27 18 24 26 sylancr zxz=zx
28 eqeq1 z=zz=zxz=zx
29 28 rexbidv z=zxz=zxxz=zx
30 27 29 syl5ibrcom zz=zxz=zx
31 absor zz=zz=z
32 17 30 31 mpjaod zxz=zx
33 8 32 syl zxz=zx
34 7 33 vtoclga AxA=Ax
35 2 34 syl φxA=Ax
36 3 zcnd φB
37 36 adantr φxB
38 37 mul01d φxB0=0
39 38 oveq2d φxAx+B0=Ax+0
40 2 zcnd φA
41 zcn xx
42 mulcl AxAx
43 40 41 42 syl2an φxAx
44 43 addridd φxAx+0=Ax
45 39 44 eqtrd φxAx+B0=Ax
46 45 eqeq2d φxA=Ax+B0A=Ax
47 0z 0
48 oveq2 y=0By=B0
49 48 oveq2d y=0Ax+By=Ax+B0
50 49 rspceeqv 0A=Ax+B0yA=Ax+By
51 47 50 mpan A=Ax+B0yA=Ax+By
52 46 51 syl6bir φxA=AxyA=Ax+By
53 52 reximdva φxA=AxxyA=Ax+By
54 35 53 mpd φxyA=Ax+By
55 nnabscl AA0A
56 55 ex AA0A
57 2 56 syl φA0A
58 eqeq1 z=Az=Ax+ByA=Ax+By
59 58 2rexbidv z=Axyz=Ax+ByxyA=Ax+By
60 59 1 elrab2 AMAxyA=Ax+By
61 60 simplbi2com xyA=Ax+ByAAM
62 54 57 61 sylsyld φA0AM