Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bezout.1 | |
|
bezout.3 | |
||
bezout.4 | |
||
Assertion | bezoutlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bezout.1 | |
|
2 | bezout.3 | |
|
3 | bezout.4 | |
|
4 | fveq2 | |
|
5 | oveq1 | |
|
6 | 4 5 | eqeq12d | |
7 | 6 | rexbidv | |
8 | zre | |
|
9 | 1z | |
|
10 | ax-1rid | |
|
11 | 10 | eqcomd | |
12 | oveq2 | |
|
13 | 12 | rspceeqv | |
14 | 9 11 13 | sylancr | |
15 | eqeq1 | |
|
16 | 15 | rexbidv | |
17 | 14 16 | syl5ibrcom | |
18 | neg1z | |
|
19 | recn | |
|
20 | 19 | mulm1d | |
21 | neg1cn | |
|
22 | mulcom | |
|
23 | 21 19 22 | sylancr | |
24 | 20 23 | eqtr3d | |
25 | oveq2 | |
|
26 | 25 | rspceeqv | |
27 | 18 24 26 | sylancr | |
28 | eqeq1 | |
|
29 | 28 | rexbidv | |
30 | 27 29 | syl5ibrcom | |
31 | absor | |
|
32 | 17 30 31 | mpjaod | |
33 | 8 32 | syl | |
34 | 7 33 | vtoclga | |
35 | 2 34 | syl | |
36 | 3 | zcnd | |
37 | 36 | adantr | |
38 | 37 | mul01d | |
39 | 38 | oveq2d | |
40 | 2 | zcnd | |
41 | zcn | |
|
42 | mulcl | |
|
43 | 40 41 42 | syl2an | |
44 | 43 | addridd | |
45 | 39 44 | eqtrd | |
46 | 45 | eqeq2d | |
47 | 0z | |
|
48 | oveq2 | |
|
49 | 48 | oveq2d | |
50 | 49 | rspceeqv | |
51 | 47 50 | mpan | |
52 | 46 51 | syl6bir | |
53 | 52 | reximdva | |
54 | 35 53 | mpd | |
55 | nnabscl | |
|
56 | 55 | ex | |
57 | 2 56 | syl | |
58 | eqeq1 | |
|
59 | 58 | 2rexbidv | |
60 | 59 1 | elrab2 | |
61 | 60 | simplbi2com | |
62 | 54 57 61 | sylsyld | |