| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzfid |  | 
						
							| 2 |  | fzssp1 |  | 
						
							| 3 |  | nn0cn |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 |  | ax-1cn |  | 
						
							| 6 |  | npcan |  | 
						
							| 7 | 4 5 6 | sylancl |  | 
						
							| 8 | 7 | oveq2d |  | 
						
							| 9 | 2 8 | sseqtrid |  | 
						
							| 10 | 9 | sselda |  | 
						
							| 11 |  | bccl2 |  | 
						
							| 12 | 11 | adantl |  | 
						
							| 13 | 12 | nncnd |  | 
						
							| 14 |  | simpl |  | 
						
							| 15 |  | elfznn0 |  | 
						
							| 16 |  | expcl |  | 
						
							| 17 | 14 15 16 | syl2an |  | 
						
							| 18 | 13 17 | mulcld |  | 
						
							| 19 | 10 18 | syldan |  | 
						
							| 20 | 1 19 | fsumcl |  | 
						
							| 21 |  | expcl |  | 
						
							| 22 |  | addcom |  | 
						
							| 23 | 14 5 22 | sylancl |  | 
						
							| 24 | 23 | oveq1d |  | 
						
							| 25 |  | binom1p |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 |  | nn0uz |  | 
						
							| 28 | 26 27 | eleqtrdi |  | 
						
							| 29 |  | oveq2 |  | 
						
							| 30 |  | oveq2 |  | 
						
							| 31 | 29 30 | oveq12d |  | 
						
							| 32 | 28 18 31 | fsumm1 |  | 
						
							| 33 |  | bcnn |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 34 | oveq1d |  | 
						
							| 36 | 21 | mullidd |  | 
						
							| 37 | 35 36 | eqtrd |  | 
						
							| 38 | 37 | oveq2d |  | 
						
							| 39 | 32 38 | eqtrd |  | 
						
							| 40 | 24 25 39 | 3eqtrd |  | 
						
							| 41 | 20 21 40 | mvrraddd |  |