Description: A summation for the difference between ( ( A + 1 ) ^ N ) and ( A ^ N ) . (Contributed by Scott Fenton, 9-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | binom1dif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid | |
|
2 | fzssp1 | |
|
3 | nn0cn | |
|
4 | 3 | adantl | |
5 | ax-1cn | |
|
6 | npcan | |
|
7 | 4 5 6 | sylancl | |
8 | 7 | oveq2d | |
9 | 2 8 | sseqtrid | |
10 | 9 | sselda | |
11 | bccl2 | |
|
12 | 11 | adantl | |
13 | 12 | nncnd | |
14 | simpl | |
|
15 | elfznn0 | |
|
16 | expcl | |
|
17 | 14 15 16 | syl2an | |
18 | 13 17 | mulcld | |
19 | 10 18 | syldan | |
20 | 1 19 | fsumcl | |
21 | expcl | |
|
22 | addcom | |
|
23 | 14 5 22 | sylancl | |
24 | 23 | oveq1d | |
25 | binom1p | |
|
26 | simpr | |
|
27 | nn0uz | |
|
28 | 26 27 | eleqtrdi | |
29 | oveq2 | |
|
30 | oveq2 | |
|
31 | 29 30 | oveq12d | |
32 | 28 18 31 | fsumm1 | |
33 | bcnn | |
|
34 | 33 | adantl | |
35 | 34 | oveq1d | |
36 | 21 | mullidd | |
37 | 35 36 | eqtrd | |
38 | 37 | oveq2d | |
39 | 32 38 | eqtrd | |
40 | 24 25 39 | 3eqtrd | |
41 | 20 21 40 | mvrraddd | |