| Step | Hyp | Ref | Expression | 
						
							| 1 |  | binomcxp.a |  | 
						
							| 2 |  | binomcxp.b |  | 
						
							| 3 |  | binomcxp.lt |  | 
						
							| 4 |  | binomcxp.c |  | 
						
							| 5 |  | binomcxplem.f |  | 
						
							| 6 |  | binomcxplem.s |  | 
						
							| 7 |  | binomcxplem.r |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 | 8 | oveq1d |  | 
						
							| 10 | 9 | oveq2d |  | 
						
							| 11 | 10 | mpteq2dva |  | 
						
							| 12 |  | fveq2 |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 12 13 | oveq12d |  | 
						
							| 15 | 14 | cbvmptv |  | 
						
							| 16 | 11 15 | eqtrdi |  | 
						
							| 17 | 16 | cbvmptv |  | 
						
							| 18 | 6 17 | eqtri |  | 
						
							| 19 | 4 | ad2antrr |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 19 20 | bcccl |  | 
						
							| 22 | 21 5 | fmptd |  | 
						
							| 23 |  | fvoveq1 |  | 
						
							| 24 |  | fveq2 |  | 
						
							| 25 | 23 24 | oveq12d |  | 
						
							| 26 | 25 | fveq2d |  | 
						
							| 27 | 26 | cbvmptv |  | 
						
							| 28 |  | nn0uz |  | 
						
							| 29 |  | 0nn0 |  | 
						
							| 30 | 29 | a1i |  | 
						
							| 31 | 5 | a1i |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 32 | oveq2d |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 |  | ovexd |  | 
						
							| 36 | 31 33 34 35 | fvmptd |  | 
						
							| 37 |  | elfznn0 |  | 
						
							| 38 | 37 | con3i |  | 
						
							| 39 | 38 | ad2antlr |  | 
						
							| 40 | 4 | adantr |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 40 41 | bcc0 |  | 
						
							| 43 | 42 | necon3abid |  | 
						
							| 44 | 43 | adantlr |  | 
						
							| 45 | 39 44 | mpbird |  | 
						
							| 46 | 36 45 | eqnetrd |  | 
						
							| 47 | 1 2 3 4 5 | binomcxplemfrat |  | 
						
							| 48 |  | ax-1ne0 |  | 
						
							| 49 | 48 | a1i |  | 
						
							| 50 | 18 22 7 27 28 30 46 47 49 | radcnvrat |  | 
						
							| 51 |  | 1div1e1 |  | 
						
							| 52 | 50 51 | eqtrdi |  |