Metamath Proof Explorer


Theorem bj-elgab

Description: Elements of a generalized class abstraction. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-elgab.nf φxφ
bj-elgab.nfa φ_xA
bj-elgab.ex φAV
bj-elgab.is φxA=Bψχ
Assertion bj-elgab Could not format assertion : No typesetting found for |- ( ph -> ( A e. {{ B | x | ps }} <-> ch ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-elgab.nf φxφ
2 bj-elgab.nfa φ_xA
3 bj-elgab.ex φAV
4 bj-elgab.is φxA=Bψχ
5 df-bj-gab Could not format {{ B | x | ps }} = { y | E. x ( B = y /\ ps ) } : No typesetting found for |- {{ B | x | ps }} = { y | E. x ( B = y /\ ps ) } with typecode |-
6 5 eleq2i Could not format ( A e. {{ B | x | ps }} <-> A e. { y | E. x ( B = y /\ ps ) } ) : No typesetting found for |- ( A e. {{ B | x | ps }} <-> A e. { y | E. x ( B = y /\ ps ) } ) with typecode |-
7 1 adantr φy=Axφ
8 nfcvd _xA_xy
9 id _xA_xA
10 8 9 nfeqd _xAxy=A
11 10 nf5rd _xAy=Axy=A
12 2 11 syl φy=Axy=A
13 12 imp φy=Axy=A
14 19.26 xφy=Axφxy=A
15 7 13 14 sylanbrc φy=Axφy=A
16 eqeq2 y=AB=yB=A
17 eqcom B=AA=B
18 16 17 bitrdi y=AB=yA=B
19 18 anbi1d y=AB=yψA=Bψ
20 19 adantl φy=AB=yψA=Bψ
21 15 20 exbidh φy=AxB=yψxA=Bψ
22 21 ex φy=AxB=yψxA=Bψ
23 22 alrimiv φyy=AxB=yψxA=Bψ
24 elabgt AVyy=AxB=yψxA=BψAy|xB=yψxA=Bψ
25 3 23 24 syl2anc φAy|xB=yψxA=Bψ
26 25 4 bitrd φAy|xB=yψχ
27 6 26 bitrid Could not format ( ph -> ( A e. {{ B | x | ps }} <-> ch ) ) : No typesetting found for |- ( ph -> ( A e. {{ B | x | ps }} <-> ch ) ) with typecode |-