Metamath Proof Explorer


Theorem bj-elgab

Description: Elements of a generalized class abstraction. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-elgab.nf φ x φ
bj-elgab.nfa φ _ x A
bj-elgab.ex φ A V
bj-elgab.is φ x A = B ψ χ
Assertion bj-elgab Could not format assertion : No typesetting found for |- ( ph -> ( A e. {{ B | x | ps }} <-> ch ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-elgab.nf φ x φ
2 bj-elgab.nfa φ _ x A
3 bj-elgab.ex φ A V
4 bj-elgab.is φ x A = B ψ χ
5 df-bj-gab Could not format {{ B | x | ps }} = { y | E. x ( B = y /\ ps ) } : No typesetting found for |- {{ B | x | ps }} = { y | E. x ( B = y /\ ps ) } with typecode |-
6 5 eleq2i Could not format ( A e. {{ B | x | ps }} <-> A e. { y | E. x ( B = y /\ ps ) } ) : No typesetting found for |- ( A e. {{ B | x | ps }} <-> A e. { y | E. x ( B = y /\ ps ) } ) with typecode |-
7 1 adantr φ y = A x φ
8 nfcvd _ x A _ x y
9 id _ x A _ x A
10 8 9 nfeqd _ x A x y = A
11 10 nf5rd _ x A y = A x y = A
12 2 11 syl φ y = A x y = A
13 12 imp φ y = A x y = A
14 19.26 x φ y = A x φ x y = A
15 7 13 14 sylanbrc φ y = A x φ y = A
16 eqeq2 y = A B = y B = A
17 eqcom B = A A = B
18 16 17 bitrdi y = A B = y A = B
19 18 anbi1d y = A B = y ψ A = B ψ
20 19 adantl φ y = A B = y ψ A = B ψ
21 15 20 exbidh φ y = A x B = y ψ x A = B ψ
22 21 ex φ y = A x B = y ψ x A = B ψ
23 22 alrimiv φ y y = A x B = y ψ x A = B ψ
24 elabgt A V y y = A x B = y ψ x A = B ψ A y | x B = y ψ x A = B ψ
25 3 23 24 syl2anc φ A y | x B = y ψ x A = B ψ
26 25 4 bitrd φ A y | x B = y ψ χ
27 6 26 syl5bb Could not format ( ph -> ( A e. {{ B | x | ps }} <-> ch ) ) : No typesetting found for |- ( ph -> ( A e. {{ B | x | ps }} <-> ch ) ) with typecode |-