Metamath Proof Explorer


Theorem bj-snsetex

Description: The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep . (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snsetex A V x | x A V

Proof

Step Hyp Ref Expression
1 elisset A V y y = A
2 eleq2 y = A x y x A
3 2 abbidv y = A x | x y = x | x A
4 eleq1 x | x y = x | x A x | x y V x | x A V
5 4 biimpd x | x y = x | x A x | x y V x | x A V
6 3 5 syl y = A x | x y V x | x A V
7 6 eximi y y = A y x | x y V x | x A V
8 1 7 syl A V y x | x y V x | x A V
9 bj-eximcom y x | x y V x | x A V y x | x y V y x | x A V
10 9 com12 y x | x y V y x | x y V x | x A V y x | x A V
11 ax-rep u z t z u = t t = z z t t z u u y z u = t
12 19.3v z u = t u = t
13 12 sbbii z t z u = t z t u = t
14 sbsbc z t u = t [˙z / t]˙ u = t
15 sbceq2g z V [˙z / t]˙ u = t u = z / t t
16 15 elv [˙z / t]˙ u = t u = z / t t
17 14 16 bitri z t u = t u = z / t t
18 bj-csbsn z / t t = z
19 18 eqeq2i u = z / t t u = z
20 17 19 bitri z t u = t u = z
21 eqtr2 u = t u = z t = z
22 vex t V
23 22 sneqr t = z t = z
24 21 23 syl u = t u = z t = z
25 20 24 sylan2b u = t z t u = t t = z
26 12 13 25 syl2anb z u = t z t z u = t t = z
27 26 gen2 t z z u = t z t z u = t t = z
28 nfa1 z z u = t
29 28 mo z t z u = t t = z t z z u = t z t z u = t t = z
30 27 29 mpbir z t z u = t t = z
31 11 30 mpg z t t z u u y z u = t
32 bj-sbel1 t x x y t / x x y
33 bj-csbsn t / x x = t
34 33 eleq1i t / x x y t y
35 32 34 bitri t x x y t y
36 df-clab t x | x y t x x y
37 12 anbi2i u y z u = t u y u = t
38 eleq1a u y t = u t y
39 38 com12 t = u u y t y
40 39 eqcoms u = t u y t y
41 40 imdistanri u y u = t t y u = t
42 eleq1a t y u = t u y
43 42 impac t y u = t u y u = t
44 41 43 impbii u y u = t t y u = t
45 37 44 bitri u y z u = t t y u = t
46 45 exbii u u y z u = t u t y u = t
47 snex t V
48 47 isseti u u = t
49 19.42v u t y u = t t y u u = t
50 48 49 mpbiran2 u t y u = t t y
51 46 50 bitri u u y z u = t t y
52 35 36 51 3bitr4ri u u y z u = t t x | x y
53 52 bibi2i t z u u y z u = t t z t x | x y
54 53 albii t t z u u y z u = t t t z t x | x y
55 54 exbii z t t z u u y z u = t z t t z t x | x y
56 31 55 mpbi z t t z t x | x y
57 dfcleq z = x | x y t t z t x | x y
58 57 exbii z z = x | x y z t t z t x | x y
59 56 58 mpbir z z = x | x y
60 59 issetri x | x y V
61 10 60 mpg y x | x y V x | x A V y x | x A V
62 8 61 syl A V y x | x A V
63 ax5e y x | x A V x | x A V
64 62 63 syl A V x | x A V