Metamath Proof Explorer


Theorem bnj1145

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1145.1 φf=predXAR
bnj1145.2 ψiωsucinfsuci=yfipredyAR
bnj1145.3 D=ω
bnj1145.4 B=f|nDfFnnφψ
bnj1145.5 χnDfFnnφψ
bnj1145.6 θiinχjni=sucj
Assertion bnj1145 trClXARA

Proof

Step Hyp Ref Expression
1 bnj1145.1 φf=predXAR
2 bnj1145.2 ψiωsucinfsuci=yfipredyAR
3 bnj1145.3 D=ω
4 bnj1145.4 B=f|nDfFnnφψ
5 bnj1145.5 χnDfFnnφψ
6 bnj1145.6 θiinχjni=sucj
7 1 2 3 4 bnj882 trClXAR=fBidomffi
8 ss2iun fBidomffiAfBidomffifBA
9 5 4 bnj1083 fBnχ
10 2 bnj1095 ψiψ
11 10 5 bnj1096 χiχ
12 3 bnj1098 jiinnDjni=sucj
13 5 bnj1232 χnD
14 13 3anim3i iinχiinnD
15 12 14 bnj1101 jiinχjni=sucj
16 ancl iinχjni=sucjiinχiinχjni=sucj
17 15 16 bnj101 jiinχiinχjni=sucj
18 6 imbi2i iinχθiinχiinχjni=sucj
19 18 exbii jiinχθjiinχiinχjni=sucj
20 17 19 mpbir jiinχθ
21 bnj213 predyARA
22 21 bnj226 yfjpredyARA
23 simpr jni=sucji=sucj
24 6 23 simplbiim θi=sucj
25 simp2 iinχin
26 13 3ad2ant3 iinχnD
27 3 bnj923 nDnω
28 elnn innωiω
29 27 28 sylan2 innDiω
30 25 26 29 syl2anc iinχiω
31 6 30 bnj832 θiω
32 vex jV
33 32 bnj216 i=sucjji
34 elnn jiiωjω
35 33 34 sylan i=sucjiωjω
36 24 31 35 syl2anc θjω
37 6 25 bnj832 θin
38 24 37 eqeltrrd θsucjn
39 2 bnj589 ψjωsucjnfsucj=yfjpredyAR
40 39 biimpi ψjωsucjnfsucj=yfjpredyAR
41 40 bnj708 nDfFnnφψjωsucjnfsucj=yfjpredyAR
42 rsp jωsucjnfsucj=yfjpredyARjωsucjnfsucj=yfjpredyAR
43 41 42 syl nDfFnnφψjωsucjnfsucj=yfjpredyAR
44 5 43 sylbi χjωsucjnfsucj=yfjpredyAR
45 44 3ad2ant3 iinχjωsucjnfsucj=yfjpredyAR
46 6 45 bnj832 θjωsucjnfsucj=yfjpredyAR
47 36 38 46 mp2d θfsucj=yfjpredyAR
48 fveqeq2 i=sucjfi=yfjpredyARfsucj=yfjpredyAR
49 24 48 syl θfi=yfjpredyARfsucj=yfjpredyAR
50 47 49 mpbird θfi=yfjpredyAR
51 22 50 bnj1262 θfiA
52 20 51 bnj1023 jiinχfiA
53 3anass iinχiinχ
54 53 imbi1i iinχfiAiinχfiA
55 54 exbii jiinχfiAjiinχfiA
56 52 55 mpbi jiinχfiA
57 1 biimpi φf=predXAR
58 5 57 bnj771 χf=predXAR
59 fveq2 i=fi=f
60 bnj213 predXARA
61 sseq1 f=predXARfApredXARA
62 60 61 mpbiri f=predXARfA
63 sseq1 fi=ffiAfA
64 63 biimpar fi=ffAfiA
65 59 62 64 syl2an i=f=predXARfiA
66 58 65 sylan2 i=χfiA
67 66 adantrl i=inχfiA
68 56 67 bnj1109 jinχfiA
69 19.9v jinχfiAinχfiA
70 68 69 mpbi inχfiA
71 70 expcom χinfiA
72 fndm fFnndomf=n
73 5 72 bnj770 χdomf=n
74 eleq2 domf=nidomfin
75 74 imbi1d domf=nidomffiAinfiA
76 73 75 syl χidomffiAinfiA
77 71 76 mpbird χidomffiA
78 11 77 hbralrimi χidomffiA
79 78 exlimiv nχidomffiA
80 9 79 sylbi fBidomffiA
81 ss2iun idomffiAidomffiidomfA
82 bnj1143 idomfAA
83 81 82 sstrdi idomffiAidomffiA
84 80 83 syl fBidomffiA
85 8 84 mprg fBidomffifBA
86 4 bnj1317 wBfwB
87 86 bnj1146 fBAA
88 85 87 sstri fBidomffiA
89 7 88 eqsstri trClXARA