Description: Well-founded induction. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1204.1 | |
|
Assertion | bnj1204 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1204.1 | |
|
2 | simp1 | |
|
3 | ssrab2 | |
|
4 | 3 | a1i | |
5 | simp3 | |
|
6 | rabn0 | |
|
7 | 5 6 | sylibr | |
8 | nfrab1 | |
|
9 | 8 | nfcrii | |
10 | 9 | bnj1228 | |
11 | 2 4 7 10 | syl3anc | |
12 | biid | |
|
13 | nfv | |
|
14 | nfra1 | |
|
15 | nfre1 | |
|
16 | 13 14 15 | nf3an | |
17 | 16 | nf5ri | |
18 | 11 12 17 | bnj1521 | |
19 | eqid | |
|
20 | 19 12 | bnj1212 | |
21 | nfra1 | |
|
22 | simp3 | |
|
23 | 22 | bnj1211 | |
24 | con2b | |
|
25 | 24 | albii | |
26 | 23 25 | sylib | |
27 | simp2 | |
|
28 | sp | |
|
29 | 26 27 28 | sylc | |
30 | simp1 | |
|
31 | nfcv | |
|
32 | 31 | elrabsf | |
33 | vex | |
|
34 | sbcng | |
|
35 | 33 34 | ax-mp | |
36 | 35 | anbi2i | |
37 | 32 36 | bitri | |
38 | 37 | notbii | |
39 | imnan | |
|
40 | 38 39 | sylbb2 | |
41 | 40 | imp | |
42 | 41 | notnotrd | |
43 | 29 30 42 | syl2anc | |
44 | 43 | 3expa | |
45 | 44 | expcom | |
46 | 45 | expd | |
47 | 21 46 | ralrimi | |
48 | 47 1 | sylibr | |
49 | 48 | 3ad2ant3 | |
50 | simp12 | |
|
51 | simp3 | |
|
52 | 51 | bnj1211 | |
53 | simp1 | |
|
54 | simp2 | |
|
55 | sp | |
|
56 | 52 53 54 55 | syl3c | |
57 | 20 49 50 56 | syl3anc | |
58 | rabid | |
|
59 | 58 | simprbi | |
60 | 59 | 3ad2ant2 | |
61 | 18 57 60 | bnj1304 | |
62 | 61 | bnj1224 | |
63 | dfral2 | |
|
64 | 62 63 | sylibr | |