Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e., a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1312.1 | |
|
bnj1312.2 | |
||
bnj1312.3 | |
||
bnj1312.4 | |
||
bnj1312.5 | |
||
bnj1312.6 | |
||
bnj1312.7 | |
||
bnj1312.8 | No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | ||
bnj1312.9 | No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | ||
bnj1312.10 | |
||
bnj1312.11 | |
||
bnj1312.12 | |
||
bnj1312.13 | |
||
bnj1312.14 | |
||
Assertion | bnj1312 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1312.1 | |
|
2 | bnj1312.2 | |
|
3 | bnj1312.3 | |
|
4 | bnj1312.4 | |
|
5 | bnj1312.5 | |
|
6 | bnj1312.6 | |
|
7 | bnj1312.7 | |
|
8 | bnj1312.8 | Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | |
9 | bnj1312.9 | Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | |
10 | bnj1312.10 | |
|
11 | bnj1312.11 | |
|
12 | bnj1312.12 | |
|
13 | bnj1312.13 | |
|
14 | bnj1312.14 | |
|
15 | 6 | simplbi | |
16 | 5 | ssrab3 | |
17 | 16 | a1i | |
18 | 6 | simprbi | |
19 | 5 | bnj1230 | |
20 | 19 | bnj1228 | |
21 | 15 17 18 20 | syl3anc | |
22 | nfv | |
|
23 | 19 | nfcii | |
24 | nfcv | |
|
25 | 23 24 | nfne | |
26 | 22 25 | nfan | |
27 | 6 26 | nfxfr | |
28 | 27 | nf5ri | |
29 | 21 7 28 | bnj1521 | |
30 | 7 | simp2bi | |
31 | 5 | bnj1538 | |
32 | 1 2 3 4 5 6 7 8 9 10 11 12 | bnj1489 | |
33 | 7 15 | bnj835 | |
34 | 1 2 3 4 5 6 7 8 9 10 | bnj1384 | |
35 | 33 34 | syl | |
36 | 1 2 3 4 5 6 7 8 9 10 | bnj1415 | |
37 | 35 36 | bnj1422 | |
38 | 1 2 3 4 5 6 7 8 9 10 11 12 36 | bnj1416 | |
39 | 1 2 3 4 5 6 7 8 9 10 11 12 35 38 36 | bnj1421 | |
40 | 39 38 | bnj1422 | |
41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 37 40 | bnj1423 | |
42 | 14 | fneq2i | |
43 | 40 42 | sylibr | |
44 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | bnj1452 | |
45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 32 41 43 44 | bnj1463 | |
46 | 45 38 | jca | |
47 | 1 2 3 4 5 6 7 8 9 10 11 12 46 | bnj1491 | |
48 | 32 47 | mpdan | |
49 | 48 4 | bnj1198 | |
50 | 31 49 | nsyl3 | |
51 | 29 30 50 | bnj1304 | |
52 | 6 51 | bnj1541 | |
53 | 5 52 | bnj1476 | |
54 | 4 | exbii | |
55 | df-rex | |
|
56 | 54 55 | bitr4i | |
57 | 56 | ralbii | |
58 | 53 57 | sylib | |