Metamath Proof Explorer


Theorem bnj1312

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e., a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1312.1 B=d|dAxdpredxARd
bnj1312.2 Y=xfpredxAR
bnj1312.3 C=f|dBfFndxdfx=GY
bnj1312.4 τfCdomf=xtrClxAR
bnj1312.5 D=xA|¬fτ
bnj1312.6 ψRFrSeAD
bnj1312.7 χψxDyD¬yRx
bnj1312.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1312.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1312.10 P=H
bnj1312.11 Z=xPpredxAR
bnj1312.12 Q=PxGZ
bnj1312.13 W=zQpredzAR
bnj1312.14 E=xtrClxAR
Assertion bnj1312 RFrSeAxAfCdomf=xtrClxAR

Proof

Step Hyp Ref Expression
1 bnj1312.1 B=d|dAxdpredxARd
2 bnj1312.2 Y=xfpredxAR
3 bnj1312.3 C=f|dBfFndxdfx=GY
4 bnj1312.4 τfCdomf=xtrClxAR
5 bnj1312.5 D=xA|¬fτ
6 bnj1312.6 ψRFrSeAD
7 bnj1312.7 χψxDyD¬yRx
8 bnj1312.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1312.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1312.10 P=H
11 bnj1312.11 Z=xPpredxAR
12 bnj1312.12 Q=PxGZ
13 bnj1312.13 W=zQpredzAR
14 bnj1312.14 E=xtrClxAR
15 6 simplbi ψRFrSeA
16 5 ssrab3 DA
17 16 a1i ψDA
18 6 simprbi ψD
19 5 bnj1230 wDxwD
20 19 bnj1228 RFrSeADADxDyD¬yRx
21 15 17 18 20 syl3anc ψxDyD¬yRx
22 nfv xRFrSeA
23 19 nfcii _xD
24 nfcv _x
25 23 24 nfne xD
26 22 25 nfan xRFrSeAD
27 6 26 nfxfr xψ
28 27 nf5ri ψxψ
29 21 7 28 bnj1521 ψxχ
30 7 simp2bi χxD
31 5 bnj1538 xD¬fτ
32 1 2 3 4 5 6 7 8 9 10 11 12 bnj1489 χQV
33 7 15 bnj835 χRFrSeA
34 1 2 3 4 5 6 7 8 9 10 bnj1384 RFrSeAFunP
35 33 34 syl χFunP
36 1 2 3 4 5 6 7 8 9 10 bnj1415 χdomP=trClxAR
37 35 36 bnj1422 χPFntrClxAR
38 1 2 3 4 5 6 7 8 9 10 11 12 36 bnj1416 χdomQ=xtrClxAR
39 1 2 3 4 5 6 7 8 9 10 11 12 35 38 36 bnj1421 χFunQ
40 39 38 bnj1422 χQFnxtrClxAR
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 37 40 bnj1423 χzEQz=GW
42 14 fneq2i QFnEQFnxtrClxAR
43 40 42 sylibr χQFnE
44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bnj1452 χEB
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 32 41 43 44 bnj1463 χQC
46 45 38 jca χQCdomQ=xtrClxAR
47 1 2 3 4 5 6 7 8 9 10 11 12 46 bnj1491 χQVffCdomf=xtrClxAR
48 32 47 mpdan χffCdomf=xtrClxAR
49 48 4 bnj1198 χfτ
50 31 49 nsyl3 χ¬xD
51 29 30 50 bnj1304 ¬ψ
52 6 51 bnj1541 RFrSeAD=
53 5 52 bnj1476 RFrSeAxAfτ
54 4 exbii fτffCdomf=xtrClxAR
55 df-rex fCdomf=xtrClxARffCdomf=xtrClxAR
56 54 55 bitr4i fτfCdomf=xtrClxAR
57 56 ralbii xAfτxAfCdomf=xtrClxAR
58 53 57 sylib RFrSeAxAfCdomf=xtrClxAR