| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrrhm.b |  | 
						
							| 2 |  | zrrhm.0 |  | 
						
							| 3 |  | zrrhm.h |  | 
						
							| 4 |  | mndmgm |  | 
						
							| 5 | 4 | anim1i |  | 
						
							| 6 | 5 | 3adant3 |  | 
						
							| 7 | 6 | ancomd |  | 
						
							| 8 | 1 | fvexi |  | 
						
							| 9 |  | hash1snb |  | 
						
							| 10 | 8 9 | ax-mp |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 11 2 | mndidcl |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 15 3 | fmptd |  | 
						
							| 17 | 3 | a1i |  | 
						
							| 18 |  | eqidd |  | 
						
							| 19 |  | vsnid |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 |  | eleq2 |  | 
						
							| 22 | 20 21 | mpbird |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 17 18 23 14 | fvmptd |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 | 25 25 | oveq12d |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 11 27 2 | mndlid |  | 
						
							| 29 | 12 28 | mpdan |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 1 37 | mgmcl |  | 
						
							| 39 | 35 36 36 38 | syl3anc |  | 
						
							| 40 |  | eleq2 |  | 
						
							| 41 |  | elsni |  | 
						
							| 42 | 40 41 | biimtrdi |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 39 44 | mpd |  | 
						
							| 46 | 23 45 | mpdan |  | 
						
							| 47 | 46 | fveq2d |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 48 25 | eqtr2d |  | 
						
							| 50 | 26 32 49 | 3eqtrrd |  | 
						
							| 51 | 24 50 | mpdan |  | 
						
							| 52 |  | id |  | 
						
							| 53 | 52 | raleqdv |  | 
						
							| 54 | 52 53 | raleqbidv |  | 
						
							| 55 | 54 | adantl |  | 
						
							| 56 |  | fvoveq1 |  | 
						
							| 57 |  | fveq2 |  | 
						
							| 58 | 57 | oveq1d |  | 
						
							| 59 | 56 58 | eqeq12d |  | 
						
							| 60 |  | oveq2 |  | 
						
							| 61 | 60 | fveq2d |  | 
						
							| 62 |  | fveq2 |  | 
						
							| 63 | 62 | oveq2d |  | 
						
							| 64 | 61 63 | eqeq12d |  | 
						
							| 65 | 59 64 | 2ralsng |  | 
						
							| 66 | 65 | el2v |  | 
						
							| 67 | 55 66 | bitrdi |  | 
						
							| 68 | 51 67 | mpbird |  | 
						
							| 69 | 16 68 | jca |  | 
						
							| 70 | 69 | ex |  | 
						
							| 71 | 70 | exlimdv |  | 
						
							| 72 | 10 71 | biimtrid |  | 
						
							| 73 | 72 | 3impia |  | 
						
							| 74 | 1 11 37 27 | ismgmhm |  | 
						
							| 75 | 7 73 74 | sylanbrc |  |