Metamath Proof Explorer


Theorem canthnum

Description: The set of well-orderable subsets of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(a) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 19-May-2015)

Ref Expression
Assertion canthnum AVA𝒫Adomcard

Proof

Step Hyp Ref Expression
1 pwexg AV𝒫AV
2 inex1g 𝒫AV𝒫AFinV
3 infpwfidom 𝒫AFinVA𝒫AFin
4 1 2 3 3syl AVA𝒫AFin
5 inex1g 𝒫AV𝒫AdomcardV
6 1 5 syl AV𝒫AdomcardV
7 finnum xFinxdomcard
8 7 ssriv Findomcard
9 sslin Findomcard𝒫AFin𝒫Adomcard
10 8 9 ax-mp 𝒫AFin𝒫Adomcard
11 ssdomg 𝒫AdomcardV𝒫AFin𝒫Adomcard𝒫AFin𝒫Adomcard
12 6 10 11 mpisyl AV𝒫AFin𝒫Adomcard
13 domtr A𝒫AFin𝒫AFin𝒫AdomcardA𝒫Adomcard
14 4 12 13 syl2anc AVA𝒫Adomcard
15 eqid xr|xArx×xrWexyxfr-1y=y=xr|xArx×xrWexyxfr-1y=y
16 15 fpwwecbv xr|xArx×xrWexyxfr-1y=y=as|aAsa×asWeazafs-1z=z
17 eqid domxr|xArx×xrWexyxfr-1y=y=domxr|xArx×xrWexyxfr-1y=y
18 eqid xr|xArx×xrWexyxfr-1y=ydomxr|xArx×xrWexyxfr-1y=y-1fdomxr|xArx×xrWexyxfr-1y=y=xr|xArx×xrWexyxfr-1y=ydomxr|xArx×xrWexyxfr-1y=y-1fdomxr|xArx×xrWexyxfr-1y=y
19 16 17 18 canthnumlem AV¬f:𝒫Adomcard1-1A
20 f1of1 f:𝒫Adomcard1-1 ontoAf:𝒫Adomcard1-1A
21 19 20 nsyl AV¬f:𝒫Adomcard1-1 ontoA
22 21 nexdv AV¬ff:𝒫Adomcard1-1 ontoA
23 ensym A𝒫Adomcard𝒫AdomcardA
24 bren 𝒫AdomcardAff:𝒫Adomcard1-1 ontoA
25 23 24 sylib A𝒫Adomcardff:𝒫Adomcard1-1 ontoA
26 22 25 nsyl AV¬A𝒫Adomcard
27 brsdom A𝒫AdomcardA𝒫Adomcard¬A𝒫Adomcard
28 14 26 27 sylanbrc AVA𝒫Adomcard