Description: The set of well-orderable subsets of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(a) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 19-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | canthnum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg | |
|
2 | inex1g | |
|
3 | infpwfidom | |
|
4 | 1 2 3 | 3syl | |
5 | inex1g | |
|
6 | 1 5 | syl | |
7 | finnum | |
|
8 | 7 | ssriv | |
9 | sslin | |
|
10 | 8 9 | ax-mp | |
11 | ssdomg | |
|
12 | 6 10 11 | mpisyl | |
13 | domtr | |
|
14 | 4 12 13 | syl2anc | |
15 | eqid | |
|
16 | 15 | fpwwecbv | |
17 | eqid | |
|
18 | eqid | |
|
19 | 16 17 18 | canthnumlem | |
20 | f1of1 | |
|
21 | 19 20 | nsyl | |
22 | 21 | nexdv | |
23 | ensym | |
|
24 | bren | |
|
25 | 23 24 | sylib | |
26 | 22 25 | nsyl | |
27 | brsdom | |
|
28 | 14 26 27 | sylanbrc | |