Metamath Proof Explorer


Theorem catcoppcclOLD

Description: Obsolete proof of catcoppccl as of 13-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses catcoppccl.c C=CatCatU
catcoppccl.b B=BaseC
catcoppccl.o O=oppCatX
catcoppccl.1 φUWUni
catcoppccl.2 φωU
catcoppccl.3 φXB
Assertion catcoppcclOLD φOB

Proof

Step Hyp Ref Expression
1 catcoppccl.c C=CatCatU
2 catcoppccl.b B=BaseC
3 catcoppccl.o O=oppCatX
4 catcoppccl.1 φUWUni
5 catcoppccl.2 φωU
6 catcoppccl.3 φXB
7 eqid BaseX=BaseX
8 eqid HomX=HomX
9 eqid compX=compX
10 7 8 9 3 oppcval XBO=XsSetHomndxtposHomXsSetcompndxxBaseX×BaseX,yBaseXtposy2ndxcompX1stx
11 6 10 syl φO=XsSetHomndxtposHomXsSetcompndxxBaseX×BaseX,yBaseXtposy2ndxcompX1stx
12 1 2 4 catcbas φB=UCat
13 6 12 eleqtrd φXUCat
14 13 elin1d φXU
15 df-hom Hom=Slot14
16 4 5 wunndx φndxU
17 15 4 16 wunstr φHomndxU
18 15 4 14 wunstr φHomXU
19 4 18 wuntpos φtposHomXU
20 4 17 19 wunop φHomndxtposHomXU
21 4 14 20 wunsets φXsSetHomndxtposHomXU
22 df-cco comp=Slot15
23 22 4 16 wunstr φcompndxU
24 df-base Base=Slot1
25 24 4 14 wunstr φBaseXU
26 4 25 25 wunxp φBaseX×BaseXU
27 4 26 25 wunxp φBaseX×BaseX×BaseXU
28 22 4 14 wunstr φcompXU
29 4 28 wunrn φrancompXU
30 4 29 wununi φrancompXU
31 4 30 wundm φdomrancompXU
32 4 31 wuncnv φdomrancompX-1U
33 4 wun0 φU
34 4 33 wunsn φU
35 4 32 34 wunun φdomrancompX-1U
36 4 30 wunrn φranrancompXU
37 4 35 36 wunxp φdomrancompX-1×ranrancompXU
38 4 37 wunpw φ𝒫domrancompX-1×ranrancompXU
39 tposssxp tposy2ndxcompX1stxdomy2ndxcompX1stx-1×rany2ndxcompX1stx
40 ovssunirn y2ndxcompX1stxrancompX
41 dmss y2ndxcompX1stxrancompXdomy2ndxcompX1stxdomrancompX
42 40 41 ax-mp domy2ndxcompX1stxdomrancompX
43 cnvss domy2ndxcompX1stxdomrancompXdomy2ndxcompX1stx-1domrancompX-1
44 unss1 domy2ndxcompX1stx-1domrancompX-1domy2ndxcompX1stx-1domrancompX-1
45 42 43 44 mp2b domy2ndxcompX1stx-1domrancompX-1
46 40 rnssi rany2ndxcompX1stxranrancompX
47 xpss12 domy2ndxcompX1stx-1domrancompX-1rany2ndxcompX1stxranrancompXdomy2ndxcompX1stx-1×rany2ndxcompX1stxdomrancompX-1×ranrancompX
48 45 46 47 mp2an domy2ndxcompX1stx-1×rany2ndxcompX1stxdomrancompX-1×ranrancompX
49 39 48 sstri tposy2ndxcompX1stxdomrancompX-1×ranrancompX
50 elpw2g domrancompX-1×ranrancompXUtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompXtposy2ndxcompX1stxdomrancompX-1×ranrancompX
51 37 50 syl φtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompXtposy2ndxcompX1stxdomrancompX-1×ranrancompX
52 49 51 mpbiri φtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompX
53 52 ralrimivw φyBaseXtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompX
54 53 ralrimivw φxBaseX×BaseXyBaseXtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompX
55 eqid xBaseX×BaseX,yBaseXtposy2ndxcompX1stx=xBaseX×BaseX,yBaseXtposy2ndxcompX1stx
56 55 fmpo xBaseX×BaseXyBaseXtposy2ndxcompX1stx𝒫domrancompX-1×ranrancompXxBaseX×BaseX,yBaseXtposy2ndxcompX1stx:BaseX×BaseX×BaseX𝒫domrancompX-1×ranrancompX
57 54 56 sylib φxBaseX×BaseX,yBaseXtposy2ndxcompX1stx:BaseX×BaseX×BaseX𝒫domrancompX-1×ranrancompX
58 4 27 38 57 wunf φxBaseX×BaseX,yBaseXtposy2ndxcompX1stxU
59 4 23 58 wunop φcompndxxBaseX×BaseX,yBaseXtposy2ndxcompX1stxU
60 4 21 59 wunsets φXsSetHomndxtposHomXsSetcompndxxBaseX×BaseX,yBaseXtposy2ndxcompX1stxU
61 11 60 eqeltrd φOU
62 13 elin2d φXCat
63 3 oppccat XCatOCat
64 62 63 syl φOCat
65 61 64 elind φOUCat
66 65 12 eleqtrrd φOB