Metamath Proof Explorer


Theorem catcxpccl

Description: The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 14-Oct-2024)

Ref Expression
Hypotheses catcxpccl.c C = CatCat U
catcxpccl.b B = Base C
catcxpccl.o T = X × c Y
catcxpccl.u φ U WUni
catcxpccl.1 φ ω U
catcxpccl.x φ X B
catcxpccl.y φ Y B
Assertion catcxpccl φ T B

Proof

Step Hyp Ref Expression
1 catcxpccl.c C = CatCat U
2 catcxpccl.b B = Base C
3 catcxpccl.o T = X × c Y
4 catcxpccl.u φ U WUni
5 catcxpccl.1 φ ω U
6 catcxpccl.x φ X B
7 catcxpccl.y φ Y B
8 eqid Base X = Base X
9 eqid Base Y = Base Y
10 eqid Hom X = Hom X
11 eqid Hom Y = Hom Y
12 eqid comp X = comp X
13 eqid comp Y = comp Y
14 eqidd φ Base X × Base Y = Base X × Base Y
15 3 8 9 xpcbas Base X × Base Y = Base T
16 eqid Hom T = Hom T
17 3 15 10 11 16 xpchomfval Hom T = u Base X × Base Y , v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v
18 17 a1i φ Hom T = u Base X × Base Y , v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v
19 eqidd φ x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f = x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f
20 3 8 9 10 11 12 13 6 7 14 18 19 xpcval φ T = Base ndx Base X × Base Y Hom ndx Hom T comp ndx x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f
21 baseid Base = Slot Base ndx
22 4 5 wunndx φ ndx U
23 21 4 22 wunstr φ Base ndx U
24 1 2 4 6 catcbaselcl φ Base X U
25 1 2 4 7 catcbaselcl φ Base Y U
26 4 24 25 wunxp φ Base X × Base Y U
27 4 23 26 wunop φ Base ndx Base X × Base Y U
28 homid Hom = Slot Hom ndx
29 28 4 22 wunstr φ Hom ndx U
30 4 26 26 wunxp φ Base X × Base Y × Base X × Base Y U
31 1 2 4 6 catchomcl φ Hom X U
32 4 31 wunrn φ ran Hom X U
33 4 32 wununi φ ran Hom X U
34 1 2 4 7 catchomcl φ Hom Y U
35 4 34 wunrn φ ran Hom Y U
36 4 35 wununi φ ran Hom Y U
37 4 33 36 wunxp φ ran Hom X × ran Hom Y U
38 4 37 wunpw φ 𝒫 ran Hom X × ran Hom Y U
39 ovssunirn 1 st u Hom X 1 st v ran Hom X
40 ovssunirn 2 nd u Hom Y 2 nd v ran Hom Y
41 xpss12 1 st u Hom X 1 st v ran Hom X 2 nd u Hom Y 2 nd v ran Hom Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v ran Hom X × ran Hom Y
42 39 40 41 mp2an 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v ran Hom X × ran Hom Y
43 ovex 1 st u Hom X 1 st v V
44 ovex 2 nd u Hom Y 2 nd v V
45 43 44 xpex 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v V
46 45 elpw 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v 𝒫 ran Hom X × ran Hom Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v ran Hom X × ran Hom Y
47 42 46 mpbir 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v 𝒫 ran Hom X × ran Hom Y
48 47 rgen2w u Base X × Base Y v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v 𝒫 ran Hom X × ran Hom Y
49 eqid u Base X × Base Y , v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v = u Base X × Base Y , v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v
50 49 fmpo u Base X × Base Y v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v 𝒫 ran Hom X × ran Hom Y u Base X × Base Y , v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v : Base X × Base Y × Base X × Base Y 𝒫 ran Hom X × ran Hom Y
51 48 50 mpbi u Base X × Base Y , v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v : Base X × Base Y × Base X × Base Y 𝒫 ran Hom X × ran Hom Y
52 51 a1i φ u Base X × Base Y , v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v : Base X × Base Y × Base X × Base Y 𝒫 ran Hom X × ran Hom Y
53 4 30 38 52 wunf φ u Base X × Base Y , v Base X × Base Y 1 st u Hom X 1 st v × 2 nd u Hom Y 2 nd v U
54 17 53 eqeltrid φ Hom T U
55 4 29 54 wunop φ Hom ndx Hom T U
56 ccoid comp = Slot comp ndx
57 56 4 22 wunstr φ comp ndx U
58 4 30 26 wunxp φ Base X × Base Y × Base X × Base Y × Base X × Base Y U
59 1 2 4 6 catcccocl φ comp X U
60 4 59 wunrn φ ran comp X U
61 4 60 wununi φ ran comp X U
62 4 61 wunrn φ ran ran comp X U
63 4 62 wununi φ ran ran comp X U
64 4 63 wunpw φ 𝒫 ran ran comp X U
65 1 2 4 7 catcccocl φ comp Y U
66 4 65 wunrn φ ran comp Y U
67 4 66 wununi φ ran comp Y U
68 4 67 wunrn φ ran ran comp Y U
69 4 68 wununi φ ran ran comp Y U
70 4 69 wunpw φ 𝒫 ran ran comp Y U
71 4 64 70 wunxp φ 𝒫 ran ran comp X × 𝒫 ran ran comp Y U
72 4 54 wunrn φ ran Hom T U
73 4 72 wununi φ ran Hom T U
74 4 73 73 wunxp φ ran Hom T × ran Hom T U
75 4 71 74 wunpm φ 𝒫 ran ran comp X × 𝒫 ran ran comp Y 𝑝𝑚 ran Hom T × ran Hom T U
76 fvex comp X V
77 76 rnex ran comp X V
78 77 uniex ran comp X V
79 78 rnex ran ran comp X V
80 79 uniex ran ran comp X V
81 80 pwex 𝒫 ran ran comp X V
82 fvex comp Y V
83 82 rnex ran comp Y V
84 83 uniex ran comp Y V
85 84 rnex ran ran comp Y V
86 85 uniex ran ran comp Y V
87 86 pwex 𝒫 ran ran comp Y V
88 81 87 xpex 𝒫 ran ran comp X × 𝒫 ran ran comp Y V
89 fvex Hom T V
90 89 rnex ran Hom T V
91 90 uniex ran Hom T V
92 91 91 xpex ran Hom T × ran Hom T V
93 ovssunirn 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f ran 1 st 1 st x 1 st 2 nd x comp X 1 st y
94 ovssunirn 1 st 1 st x 1 st 2 nd x comp X 1 st y ran comp X
95 rnss 1 st 1 st x 1 st 2 nd x comp X 1 st y ran comp X ran 1 st 1 st x 1 st 2 nd x comp X 1 st y ran ran comp X
96 uniss ran 1 st 1 st x 1 st 2 nd x comp X 1 st y ran ran comp X ran 1 st 1 st x 1 st 2 nd x comp X 1 st y ran ran comp X
97 94 95 96 mp2b ran 1 st 1 st x 1 st 2 nd x comp X 1 st y ran ran comp X
98 93 97 sstri 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f ran ran comp X
99 ovex 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f V
100 99 elpw 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 𝒫 ran ran comp X 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f ran ran comp X
101 98 100 mpbir 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 𝒫 ran ran comp X
102 ovssunirn 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f ran 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y
103 ovssunirn 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y ran comp Y
104 rnss 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y ran comp Y ran 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y ran ran comp Y
105 uniss ran 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y ran ran comp Y ran 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y ran ran comp Y
106 103 104 105 mp2b ran 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y ran ran comp Y
107 102 106 sstri 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f ran ran comp Y
108 ovex 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f V
109 108 elpw 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp Y 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f ran ran comp Y
110 107 109 mpbir 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp Y
111 opelxpi 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 𝒫 ran ran comp X 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp Y 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp X × 𝒫 ran ran comp Y
112 101 110 111 mp2an 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp X × 𝒫 ran ran comp Y
113 112 rgen2w g 2 nd x Hom T y f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp X × 𝒫 ran ran comp Y
114 eqid g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f = g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f
115 114 fmpo g 2 nd x Hom T y f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp X × 𝒫 ran ran comp Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f : 2 nd x Hom T y × Hom T x 𝒫 ran ran comp X × 𝒫 ran ran comp Y
116 113 115 mpbi g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f : 2 nd x Hom T y × Hom T x 𝒫 ran ran comp X × 𝒫 ran ran comp Y
117 ovssunirn 2 nd x Hom T y ran Hom T
118 fvssunirn Hom T x ran Hom T
119 xpss12 2 nd x Hom T y ran Hom T Hom T x ran Hom T 2 nd x Hom T y × Hom T x ran Hom T × ran Hom T
120 117 118 119 mp2an 2 nd x Hom T y × Hom T x ran Hom T × ran Hom T
121 elpm2r 𝒫 ran ran comp X × 𝒫 ran ran comp Y V ran Hom T × ran Hom T V g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f : 2 nd x Hom T y × Hom T x 𝒫 ran ran comp X × 𝒫 ran ran comp Y 2 nd x Hom T y × Hom T x ran Hom T × ran Hom T g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp X × 𝒫 ran ran comp Y 𝑝𝑚 ran Hom T × ran Hom T
122 88 92 116 120 121 mp4an g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp X × 𝒫 ran ran comp Y 𝑝𝑚 ran Hom T × ran Hom T
123 122 rgen2w x Base X × Base Y × Base X × Base Y y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp X × 𝒫 ran ran comp Y 𝑝𝑚 ran Hom T × ran Hom T
124 eqid x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f = x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f
125 124 fmpo x Base X × Base Y × Base X × Base Y y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f 𝒫 ran ran comp X × 𝒫 ran ran comp Y 𝑝𝑚 ran Hom T × ran Hom T x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f : Base X × Base Y × Base X × Base Y × Base X × Base Y 𝒫 ran ran comp X × 𝒫 ran ran comp Y 𝑝𝑚 ran Hom T × ran Hom T
126 123 125 mpbi x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f : Base X × Base Y × Base X × Base Y × Base X × Base Y 𝒫 ran ran comp X × 𝒫 ran ran comp Y 𝑝𝑚 ran Hom T × ran Hom T
127 126 a1i φ x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f : Base X × Base Y × Base X × Base Y × Base X × Base Y 𝒫 ran ran comp X × 𝒫 ran ran comp Y 𝑝𝑚 ran Hom T × ran Hom T
128 4 58 75 127 wunf φ x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f U
129 4 57 128 wunop φ comp ndx x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f U
130 4 27 55 129 wuntp φ Base ndx Base X × Base Y Hom ndx Hom T comp ndx x Base X × Base Y × Base X × Base Y , y Base X × Base Y g 2 nd x Hom T y , f Hom T x 1 st g 1 st 1 st x 1 st 2 nd x comp X 1 st y 1 st f 2 nd g 2 nd 1 st x 2 nd 2 nd x comp Y 2 nd y 2 nd f U
131 20 130 eqeltrd φ T U
132 1 2 4 catcbas φ B = U Cat
133 6 132 eleqtrd φ X U Cat
134 133 elin2d φ X Cat
135 7 132 eleqtrd φ Y U Cat
136 135 elin2d φ Y Cat
137 3 134 136 xpccat φ T Cat
138 131 137 elind φ T U Cat
139 138 132 eleqtrrd φ T B