Metamath Proof Explorer


Theorem catcxpccl

Description: The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 14-Oct-2024)

Ref Expression
Hypotheses catcxpccl.c C=CatCatU
catcxpccl.b B=BaseC
catcxpccl.o T=X×cY
catcxpccl.u φUWUni
catcxpccl.1 φωU
catcxpccl.x φXB
catcxpccl.y φYB
Assertion catcxpccl φTB

Proof

Step Hyp Ref Expression
1 catcxpccl.c C=CatCatU
2 catcxpccl.b B=BaseC
3 catcxpccl.o T=X×cY
4 catcxpccl.u φUWUni
5 catcxpccl.1 φωU
6 catcxpccl.x φXB
7 catcxpccl.y φYB
8 eqid BaseX=BaseX
9 eqid BaseY=BaseY
10 eqid HomX=HomX
11 eqid HomY=HomY
12 eqid compX=compX
13 eqid compY=compY
14 eqidd φBaseX×BaseY=BaseX×BaseY
15 3 8 9 xpcbas BaseX×BaseY=BaseT
16 eqid HomT=HomT
17 3 15 10 11 16 xpchomfval HomT=uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv
18 17 a1i φHomT=uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv
19 eqidd φxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf=xBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf
20 3 8 9 10 11 12 13 6 7 14 18 19 xpcval φT=BasendxBaseX×BaseYHomndxHomTcompndxxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf
21 baseid Base=SlotBasendx
22 4 5 wunndx φndxU
23 21 4 22 wunstr φBasendxU
24 1 2 4 6 catcbaselcl φBaseXU
25 1 2 4 7 catcbaselcl φBaseYU
26 4 24 25 wunxp φBaseX×BaseYU
27 4 23 26 wunop φBasendxBaseX×BaseYU
28 homid Hom=SlotHomndx
29 28 4 22 wunstr φHomndxU
30 4 26 26 wunxp φBaseX×BaseY×BaseX×BaseYU
31 1 2 4 6 catchomcl φHomXU
32 4 31 wunrn φranHomXU
33 4 32 wununi φranHomXU
34 1 2 4 7 catchomcl φHomYU
35 4 34 wunrn φranHomYU
36 4 35 wununi φranHomYU
37 4 33 36 wunxp φranHomX×ranHomYU
38 4 37 wunpw φ𝒫ranHomX×ranHomYU
39 ovssunirn 1stuHomX1stvranHomX
40 ovssunirn 2nduHomY2ndvranHomY
41 xpss12 1stuHomX1stvranHomX2nduHomY2ndvranHomY1stuHomX1stv×2nduHomY2ndvranHomX×ranHomY
42 39 40 41 mp2an 1stuHomX1stv×2nduHomY2ndvranHomX×ranHomY
43 ovex 1stuHomX1stvV
44 ovex 2nduHomY2ndvV
45 43 44 xpex 1stuHomX1stv×2nduHomY2ndvV
46 45 elpw 1stuHomX1stv×2nduHomY2ndv𝒫ranHomX×ranHomY1stuHomX1stv×2nduHomY2ndvranHomX×ranHomY
47 42 46 mpbir 1stuHomX1stv×2nduHomY2ndv𝒫ranHomX×ranHomY
48 47 rgen2w uBaseX×BaseYvBaseX×BaseY1stuHomX1stv×2nduHomY2ndv𝒫ranHomX×ranHomY
49 eqid uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv=uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv
50 49 fmpo uBaseX×BaseYvBaseX×BaseY1stuHomX1stv×2nduHomY2ndv𝒫ranHomX×ranHomYuBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv:BaseX×BaseY×BaseX×BaseY𝒫ranHomX×ranHomY
51 48 50 mpbi uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv:BaseX×BaseY×BaseX×BaseY𝒫ranHomX×ranHomY
52 51 a1i φuBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv:BaseX×BaseY×BaseX×BaseY𝒫ranHomX×ranHomY
53 4 30 38 52 wunf φuBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndvU
54 17 53 eqeltrid φHomTU
55 4 29 54 wunop φHomndxHomTU
56 ccoid comp=Slotcompndx
57 56 4 22 wunstr φcompndxU
58 4 30 26 wunxp φBaseX×BaseY×BaseX×BaseY×BaseX×BaseYU
59 1 2 4 6 catcccocl φcompXU
60 4 59 wunrn φrancompXU
61 4 60 wununi φrancompXU
62 4 61 wunrn φranrancompXU
63 4 62 wununi φranrancompXU
64 4 63 wunpw φ𝒫ranrancompXU
65 1 2 4 7 catcccocl φcompYU
66 4 65 wunrn φrancompYU
67 4 66 wununi φrancompYU
68 4 67 wunrn φranrancompYU
69 4 68 wununi φranrancompYU
70 4 69 wunpw φ𝒫ranrancompYU
71 4 64 70 wunxp φ𝒫ranrancompX×𝒫ranrancompYU
72 4 54 wunrn φranHomTU
73 4 72 wununi φranHomTU
74 4 73 73 wunxp φranHomT×ranHomTU
75 4 71 74 wunpm φ𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomTU
76 fvex compXV
77 76 rnex rancompXV
78 77 uniex rancompXV
79 78 rnex ranrancompXV
80 79 uniex ranrancompXV
81 80 pwex 𝒫ranrancompXV
82 fvex compYV
83 82 rnex rancompYV
84 83 uniex rancompYV
85 84 rnex ranrancompYV
86 85 uniex ranrancompYV
87 86 pwex 𝒫ranrancompYV
88 81 87 xpex 𝒫ranrancompX×𝒫ranrancompYV
89 fvex HomTV
90 89 rnex ranHomTV
91 90 uniex ranHomTV
92 91 91 xpex ranHomT×ranHomTV
93 ovssunirn 1stg1st1stx1st2ndxcompX1sty1stfran1st1stx1st2ndxcompX1sty
94 ovssunirn 1st1stx1st2ndxcompX1styrancompX
95 rnss 1st1stx1st2ndxcompX1styrancompXran1st1stx1st2ndxcompX1styranrancompX
96 uniss ran1st1stx1st2ndxcompX1styranrancompXran1st1stx1st2ndxcompX1styranrancompX
97 94 95 96 mp2b ran1st1stx1st2ndxcompX1styranrancompX
98 93 97 sstri 1stg1st1stx1st2ndxcompX1sty1stfranrancompX
99 ovex 1stg1st1stx1st2ndxcompX1sty1stfV
100 99 elpw 1stg1st1stx1st2ndxcompX1sty1stf𝒫ranrancompX1stg1st1stx1st2ndxcompX1sty1stfranrancompX
101 98 100 mpbir 1stg1st1stx1st2ndxcompX1sty1stf𝒫ranrancompX
102 ovssunirn 2ndg2nd1stx2nd2ndxcompY2ndy2ndfran2nd1stx2nd2ndxcompY2ndy
103 ovssunirn 2nd1stx2nd2ndxcompY2ndyrancompY
104 rnss 2nd1stx2nd2ndxcompY2ndyrancompYran2nd1stx2nd2ndxcompY2ndyranrancompY
105 uniss ran2nd1stx2nd2ndxcompY2ndyranrancompYran2nd1stx2nd2ndxcompY2ndyranrancompY
106 103 104 105 mp2b ran2nd1stx2nd2ndxcompY2ndyranrancompY
107 102 106 sstri 2ndg2nd1stx2nd2ndxcompY2ndy2ndfranrancompY
108 ovex 2ndg2nd1stx2nd2ndxcompY2ndy2ndfV
109 108 elpw 2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompY2ndg2nd1stx2nd2ndxcompY2ndy2ndfranrancompY
110 107 109 mpbir 2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompY
111 opelxpi 1stg1st1stx1st2ndxcompX1sty1stf𝒫ranrancompX2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompY1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY
112 101 110 111 mp2an 1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY
113 112 rgen2w g2ndxHomTyfHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY
114 eqid g2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf=g2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf
115 114 fmpo g2ndxHomTyfHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:2ndxHomTy×HomTx𝒫ranrancompX×𝒫ranrancompY
116 113 115 mpbi g2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:2ndxHomTy×HomTx𝒫ranrancompX×𝒫ranrancompY
117 ovssunirn 2ndxHomTyranHomT
118 fvssunirn HomTxranHomT
119 xpss12 2ndxHomTyranHomTHomTxranHomT2ndxHomTy×HomTxranHomT×ranHomT
120 117 118 119 mp2an 2ndxHomTy×HomTxranHomT×ranHomT
121 elpm2r 𝒫ranrancompX×𝒫ranrancompYVranHomT×ranHomTVg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:2ndxHomTy×HomTx𝒫ranrancompX×𝒫ranrancompY2ndxHomTy×HomTxranHomT×ranHomTg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
122 88 92 116 120 121 mp4an g2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
123 122 rgen2w xBaseX×BaseY×BaseX×BaseYyBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
124 eqid xBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf=xBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf
125 124 fmpo xBaseX×BaseY×BaseX×BaseYyBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomTxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:BaseX×BaseY×BaseX×BaseY×BaseX×BaseY𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
126 123 125 mpbi xBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:BaseX×BaseY×BaseX×BaseY×BaseX×BaseY𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
127 126 a1i φxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:BaseX×BaseY×BaseX×BaseY×BaseX×BaseY𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
128 4 58 75 127 wunf φxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndfU
129 4 57 128 wunop φcompndxxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndfU
130 4 27 55 129 wuntp φBasendxBaseX×BaseYHomndxHomTcompndxxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndfU
131 20 130 eqeltrd φTU
132 1 2 4 catcbas φB=UCat
133 6 132 eleqtrd φXUCat
134 133 elin2d φXCat
135 7 132 eleqtrd φYUCat
136 135 elin2d φYCat
137 3 134 136 xpccat φTCat
138 131 137 elind φTUCat
139 138 132 eleqtrrd φTB