Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Revised by Mario Carneiro, 8-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caucvgr.1 | |
|
caucvgr.2 | |
||
caucvgr.3 | |
||
caucvgr.4 | |
||
Assertion | caucvgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgr.1 | |
|
2 | caucvgr.2 | |
|
3 | caucvgr.3 | |
|
4 | caucvgr.4 | |
|
5 | 2 | feqmptd | |
6 | 2 | ffvelcdmda | |
7 | 6 | replimd | |
8 | 7 | mpteq2dva | |
9 | 5 8 | eqtrd | |
10 | fvexd | |
|
11 | ovexd | |
|
12 | ref | |
|
13 | resub | |
|
14 | 13 | fveq2d | |
15 | subcl | |
|
16 | absrele | |
|
17 | 15 16 | syl | |
18 | 14 17 | eqbrtrrd | |
19 | 1 2 3 4 12 18 | caucvgrlem2 | |
20 | ax-icn | |
|
21 | 20 | elexi | |
22 | 21 | a1i | |
23 | fvexd | |
|
24 | rlimconst | |
|
25 | 1 20 24 | sylancl | |
26 | imf | |
|
27 | imsub | |
|
28 | 27 | fveq2d | |
29 | absimle | |
|
30 | 15 29 | syl | |
31 | 28 30 | eqbrtrrd | |
32 | 1 2 3 4 26 31 | caucvgrlem2 | |
33 | 22 23 25 32 | rlimmul | |
34 | 10 11 19 33 | rlimadd | |
35 | 9 34 | eqbrtrd | |
36 | rlimrel | |
|
37 | 36 | releldmi | |
38 | 35 37 | syl | |