| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caucvgr.1 |  | 
						
							| 2 |  | caucvgr.2 |  | 
						
							| 3 |  | caucvgr.3 |  | 
						
							| 4 |  | caucvgr.4 |  | 
						
							| 5 | 2 | feqmptd |  | 
						
							| 6 | 2 | ffvelcdmda |  | 
						
							| 7 | 6 | replimd |  | 
						
							| 8 | 7 | mpteq2dva |  | 
						
							| 9 | 5 8 | eqtrd |  | 
						
							| 10 |  | fvexd |  | 
						
							| 11 |  | ovexd |  | 
						
							| 12 |  | ref |  | 
						
							| 13 |  | resub |  | 
						
							| 14 | 13 | fveq2d |  | 
						
							| 15 |  | subcl |  | 
						
							| 16 |  | absrele |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 14 17 | eqbrtrrd |  | 
						
							| 19 | 1 2 3 4 12 18 | caucvgrlem2 |  | 
						
							| 20 |  | ax-icn |  | 
						
							| 21 | 20 | elexi |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 |  | fvexd |  | 
						
							| 24 |  | rlimconst |  | 
						
							| 25 | 1 20 24 | sylancl |  | 
						
							| 26 |  | imf |  | 
						
							| 27 |  | imsub |  | 
						
							| 28 | 27 | fveq2d |  | 
						
							| 29 |  | absimle |  | 
						
							| 30 | 15 29 | syl |  | 
						
							| 31 | 28 30 | eqbrtrrd |  | 
						
							| 32 | 1 2 3 4 26 31 | caucvgrlem2 |  | 
						
							| 33 | 22 23 25 32 | rlimmul |  | 
						
							| 34 | 10 11 19 33 | rlimadd |  | 
						
							| 35 | 9 34 | eqbrtrd |  | 
						
							| 36 |  | rlimrel |  | 
						
							| 37 | 36 | releldmi |  | 
						
							| 38 | 35 37 | syl |  |