Metamath Proof Explorer


Theorem caucvgr

Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Revised by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses caucvgr.1 φA
caucvgr.2 φF:A
caucvgr.3 φsupA*<=+∞
caucvgr.4 φx+jAkAjkFkFj<x
Assertion caucvgr φFdom

Proof

Step Hyp Ref Expression
1 caucvgr.1 φA
2 caucvgr.2 φF:A
3 caucvgr.3 φsupA*<=+∞
4 caucvgr.4 φx+jAkAjkFkFj<x
5 2 feqmptd φF=nAFn
6 2 ffvelcdmda φnAFn
7 6 replimd φnAFn=Fn+iFn
8 7 mpteq2dva φnAFn=nAFn+iFn
9 5 8 eqtrd φF=nAFn+iFn
10 fvexd φnAFnV
11 ovexd φnAiFnV
12 ref :
13 resub FkFjFkFj=FkFj
14 13 fveq2d FkFjFkFj=FkFj
15 subcl FkFjFkFj
16 absrele FkFjFkFjFkFj
17 15 16 syl FkFjFkFjFkFj
18 14 17 eqbrtrrd FkFjFkFjFkFj
19 1 2 3 4 12 18 caucvgrlem2 φnAFnF
20 ax-icn i
21 20 elexi iV
22 21 a1i φnAiV
23 fvexd φnAFnV
24 rlimconst AinAii
25 1 20 24 sylancl φnAii
26 imf :
27 imsub FkFjFkFj=FkFj
28 27 fveq2d FkFjFkFj=FkFj
29 absimle FkFjFkFjFkFj
30 15 29 syl FkFjFkFjFkFj
31 28 30 eqbrtrrd FkFjFkFjFkFj
32 1 2 3 4 26 31 caucvgrlem2 φnAFnF
33 22 23 25 32 rlimmul φnAiFniF
34 10 11 19 33 rlimadd φnAFn+iFnF+iF
35 9 34 eqbrtrd φFF+iF
36 rlimrel Rel
37 36 releldmi FF+iFFdom
38 35 37 syl φFdom