Metamath Proof Explorer


Theorem cdleme15b

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, showing, in their notation, (p \/ s_1) /\ (q \/ s_1)=s_1. We represent s_1 with C . (Contributed by NM, 10-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙=K
cdleme12.j ˙=joinK
cdleme12.m ˙=meetK
cdleme12.a A=AtomsK
cdleme12.h H=LHypK
cdleme12.u U=P˙Q˙W
cdleme12.f F=S˙U˙Q˙P˙S˙W
cdleme12.g G=T˙U˙Q˙P˙T˙W
cdleme15.c C=P˙S˙W
cdleme15.x X=P˙T˙W
Assertion cdleme15b KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙C˙Q˙C=C

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙=K
2 cdleme12.j ˙=joinK
3 cdleme12.m ˙=meetK
4 cdleme12.a A=AtomsK
5 cdleme12.h H=LHypK
6 cdleme12.u U=P˙Q˙W
7 cdleme12.f F=S˙U˙Q˙P˙S˙W
8 cdleme12.g G=T˙U˙Q˙P˙T˙W
9 cdleme15.c C=P˙S˙W
10 cdleme15.x X=P˙T˙W
11 9 oveq2i P˙C=P˙P˙S˙W
12 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKHL
13 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPA
14 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TSA
15 eqid BaseK=BaseK
16 15 2 4 hlatjcl KHLPASAP˙SBaseK
17 12 13 14 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙SBaseK
18 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TWH
19 15 5 lhpbase WHWBaseK
20 18 19 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TWBaseK
21 1 2 4 hlatlej1 KHLPASAP˙P˙S
22 12 13 14 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙P˙S
23 15 1 2 3 4 atmod3i1 KHLPAP˙SBaseKWBaseKP˙P˙SP˙P˙S˙W=P˙S˙P˙W
24 12 13 17 20 22 23 syl131anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙P˙S˙W=P˙S˙P˙W
25 11 24 eqtrid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙C=P˙S˙P˙W
26 25 oveq1d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙C˙Q=P˙S˙P˙W˙Q
27 hlol KHLKOL
28 12 27 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKOL
29 12 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKLat
30 15 4 atbase PAPBaseK
31 13 30 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPBaseK
32 15 2 latjcl KLatPBaseKWBaseKP˙WBaseK
33 29 31 20 32 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙WBaseK
34 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQA
35 15 4 atbase QAQBaseK
36 34 35 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQBaseK
37 15 3 latmrot KOLP˙SBaseKP˙WBaseKQBaseKP˙S˙P˙W˙Q=Q˙P˙S˙P˙W
38 28 17 33 36 37 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙S˙P˙W˙Q=Q˙P˙S˙P˙W
39 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬S˙P˙Q
40 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPQ
41 40 necomd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQP
42 1 2 4 hlatexch1 KHLQASAPAQPQ˙P˙SS˙P˙Q
43 12 34 14 13 41 42 syl131anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQ˙P˙SS˙P˙Q
44 39 43 mtod KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬Q˙P˙S
45 hlatl KHLKAtLat
46 12 45 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKAtLat
47 eqid 0.K=0.K
48 15 1 3 47 4 atnle KAtLatQAP˙SBaseK¬Q˙P˙SQ˙P˙S=0.K
49 46 34 17 48 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬Q˙P˙SQ˙P˙S=0.K
50 44 49 mpbid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQ˙P˙S=0.K
51 50 oveq1d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQ˙P˙S˙P˙W=0.K˙P˙W
52 15 3 47 olm02 KOLP˙WBaseK0.K˙P˙W=0.K
53 28 33 52 syl2anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T0.K˙P˙W=0.K
54 38 51 53 3eqtrrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T0.K=P˙S˙P˙W˙Q
55 26 54 eqtr4d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙C˙Q=0.K
56 55 oveq1d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙C˙Q˙C=0.K˙C
57 15 2 3 4 5 9 cdleme9b KHLPASAWHCBaseK
58 12 13 14 18 57 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TCBaseK
59 15 2 latjcl KLatPBaseKCBaseKP˙CBaseK
60 29 31 58 59 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙CBaseK
61 15 1 2 latlej2 KLatPBaseKCBaseKC˙P˙C
62 29 31 58 61 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TC˙P˙C
63 15 1 2 3 4 atmod2i2 KHLQAP˙CBaseKCBaseKC˙P˙CP˙C˙Q˙C=P˙C˙Q˙C
64 12 34 60 58 62 63 syl131anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙C˙Q˙C=P˙C˙Q˙C
65 15 2 47 olj02 KOLCBaseK0.K˙C=C
66 28 58 65 syl2anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T0.K˙C=C
67 56 64 66 3eqtr3d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙C˙Q˙C=C