| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme1.l |
|
| 2 |
|
cdleme1.j |
|
| 3 |
|
cdleme1.m |
|
| 4 |
|
cdleme1.a |
|
| 5 |
|
cdleme1.h |
|
| 6 |
|
cdleme1.u |
|
| 7 |
|
cdleme1.f |
|
| 8 |
1 2 3 4 5 6 7
|
cdleme1 |
|
| 9 |
8
|
oveq1d |
|
| 10 |
|
simpll |
|
| 11 |
|
simpr3l |
|
| 12 |
|
hllat |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
simpr1 |
|
| 15 |
|
eqid |
|
| 16 |
15 4
|
atbase |
|
| 17 |
14 16
|
syl |
|
| 18 |
|
simpr2 |
|
| 19 |
15 4
|
atbase |
|
| 20 |
18 19
|
syl |
|
| 21 |
15 2
|
latjcl |
|
| 22 |
13 17 20 21
|
syl3anc |
|
| 23 |
15 5
|
lhpbase |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
15 3
|
latmcl |
|
| 26 |
13 22 24 25
|
syl3anc |
|
| 27 |
6 26
|
eqeltrid |
|
| 28 |
15 1 3
|
latmle2 |
|
| 29 |
13 22 24 28
|
syl3anc |
|
| 30 |
6 29
|
eqbrtrid |
|
| 31 |
15 1 2 3 4
|
atmod4i2 |
|
| 32 |
10 11 27 24 30 31
|
syl131anc |
|
| 33 |
|
eqid |
|
| 34 |
1 3 33 4 5
|
lhpmat |
|
| 35 |
34
|
3ad2antr3 |
|
| 36 |
35
|
oveq1d |
|
| 37 |
|
hlol |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
15 2 33
|
olj02 |
|
| 40 |
38 27 39
|
syl2anc |
|
| 41 |
36 40
|
eqtrd |
|
| 42 |
9 32 41
|
3eqtr2d |
|