Description: Part of proof of Lemma E in Crawley p. 113. F represents f(r). W is the fiducial co-atom (hyperplane) w. Here we show that (r \/ f(r)) /\ w = u in their notation (4th line from bottom on p. 113). (Contributed by NM, 5-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme1.l | |
|
cdleme1.j | |
||
cdleme1.m | |
||
cdleme1.a | |
||
cdleme1.h | |
||
cdleme1.u | |
||
cdleme1.f | |
||
Assertion | cdleme2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.l | |
|
2 | cdleme1.j | |
|
3 | cdleme1.m | |
|
4 | cdleme1.a | |
|
5 | cdleme1.h | |
|
6 | cdleme1.u | |
|
7 | cdleme1.f | |
|
8 | 1 2 3 4 5 6 7 | cdleme1 | |
9 | 8 | oveq1d | |
10 | simpll | |
|
11 | simpr3l | |
|
12 | hllat | |
|
13 | 12 | ad2antrr | |
14 | simpr1 | |
|
15 | eqid | |
|
16 | 15 4 | atbase | |
17 | 14 16 | syl | |
18 | simpr2 | |
|
19 | 15 4 | atbase | |
20 | 18 19 | syl | |
21 | 15 2 | latjcl | |
22 | 13 17 20 21 | syl3anc | |
23 | 15 5 | lhpbase | |
24 | 23 | ad2antlr | |
25 | 15 3 | latmcl | |
26 | 13 22 24 25 | syl3anc | |
27 | 6 26 | eqeltrid | |
28 | 15 1 3 | latmle2 | |
29 | 13 22 24 28 | syl3anc | |
30 | 6 29 | eqbrtrid | |
31 | 15 1 2 3 4 | atmod4i2 | |
32 | 10 11 27 24 30 31 | syl131anc | |
33 | eqid | |
|
34 | 1 3 33 4 5 | lhpmat | |
35 | 34 | 3ad2antr3 | |
36 | 35 | oveq1d | |
37 | hlol | |
|
38 | 37 | ad2antrr | |
39 | 15 2 33 | olj02 | |
40 | 38 27 39 | syl2anc | |
41 | 36 40 | eqtrd | |
42 | 9 32 41 | 3eqtr2d | |