Metamath Proof Explorer


Theorem cdleme2

Description: Part of proof of Lemma E in Crawley p. 113. F represents f(r). W is the fiducial co-atom (hyperplane) w. Here we show that (r \/ f(r)) /\ w = u in their notation (4th line from bottom on p. 113). (Contributed by NM, 5-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙=K
cdleme1.j ˙=joinK
cdleme1.m ˙=meetK
cdleme1.a A=AtomsK
cdleme1.h H=LHypK
cdleme1.u U=P˙Q˙W
cdleme1.f F=R˙U˙Q˙P˙R˙W
Assertion cdleme2 KHLWHPAQARA¬R˙WR˙F˙W=U

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙=K
2 cdleme1.j ˙=joinK
3 cdleme1.m ˙=meetK
4 cdleme1.a A=AtomsK
5 cdleme1.h H=LHypK
6 cdleme1.u U=P˙Q˙W
7 cdleme1.f F=R˙U˙Q˙P˙R˙W
8 1 2 3 4 5 6 7 cdleme1 KHLWHPAQARA¬R˙WR˙F=R˙U
9 8 oveq1d KHLWHPAQARA¬R˙WR˙F˙W=R˙U˙W
10 simpll KHLWHPAQARA¬R˙WKHL
11 simpr3l KHLWHPAQARA¬R˙WRA
12 hllat KHLKLat
13 12 ad2antrr KHLWHPAQARA¬R˙WKLat
14 simpr1 KHLWHPAQARA¬R˙WPA
15 eqid BaseK=BaseK
16 15 4 atbase PAPBaseK
17 14 16 syl KHLWHPAQARA¬R˙WPBaseK
18 simpr2 KHLWHPAQARA¬R˙WQA
19 15 4 atbase QAQBaseK
20 18 19 syl KHLWHPAQARA¬R˙WQBaseK
21 15 2 latjcl KLatPBaseKQBaseKP˙QBaseK
22 13 17 20 21 syl3anc KHLWHPAQARA¬R˙WP˙QBaseK
23 15 5 lhpbase WHWBaseK
24 23 ad2antlr KHLWHPAQARA¬R˙WWBaseK
25 15 3 latmcl KLatP˙QBaseKWBaseKP˙Q˙WBaseK
26 13 22 24 25 syl3anc KHLWHPAQARA¬R˙WP˙Q˙WBaseK
27 6 26 eqeltrid KHLWHPAQARA¬R˙WUBaseK
28 15 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
29 13 22 24 28 syl3anc KHLWHPAQARA¬R˙WP˙Q˙W˙W
30 6 29 eqbrtrid KHLWHPAQARA¬R˙WU˙W
31 15 1 2 3 4 atmod4i2 KHLRAUBaseKWBaseKU˙WR˙W˙U=R˙U˙W
32 10 11 27 24 30 31 syl131anc KHLWHPAQARA¬R˙WR˙W˙U=R˙U˙W
33 eqid 0.K=0.K
34 1 3 33 4 5 lhpmat KHLWHRA¬R˙WR˙W=0.K
35 34 3ad2antr3 KHLWHPAQARA¬R˙WR˙W=0.K
36 35 oveq1d KHLWHPAQARA¬R˙WR˙W˙U=0.K˙U
37 hlol KHLKOL
38 37 ad2antrr KHLWHPAQARA¬R˙WKOL
39 15 2 33 olj02 KOLUBaseK0.K˙U=U
40 38 27 39 syl2anc KHLWHPAQARA¬R˙W0.K˙U=U
41 36 40 eqtrd KHLWHPAQARA¬R˙WR˙W˙U=U
42 9 32 41 3eqtr2d KHLWHPAQARA¬R˙WR˙F˙W=U