Metamath Proof Explorer


Theorem cdleme22d

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 9th line on p. 115. (Contributed by NM, 4-Dec-2012)

Ref Expression
Hypotheses cdleme22.l ˙=K
cdleme22.j ˙=joinK
cdleme22.m ˙=meetK
cdleme22.a A=AtomsK
cdleme22.h H=LHypK
Assertion cdleme22d KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VV=S˙T˙W

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙=K
2 cdleme22.j ˙=joinK
3 cdleme22.m ˙=meetK
4 cdleme22.a A=AtomsK
5 cdleme22.h H=LHypK
6 simp3r KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙V
7 simp1l KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VKHL
8 simp22l KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VTA
9 simp23l KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VVA
10 1 2 4 hlatlej1 KHLTAVAT˙T˙V
11 7 8 9 10 syl3anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VT˙T˙V
12 7 hllatd KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VKLat
13 simp21l KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VSA
14 eqid BaseK=BaseK
15 14 4 atbase SASBaseK
16 13 15 syl KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VSBaseK
17 14 4 atbase TATBaseK
18 8 17 syl KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VTBaseK
19 14 2 4 hlatjcl KHLTAVAT˙VBaseK
20 7 8 9 19 syl3anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VT˙VBaseK
21 14 1 2 latjle12 KLatSBaseKTBaseKT˙VBaseKS˙T˙VT˙T˙VS˙T˙T˙V
22 12 16 18 20 21 syl13anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙VT˙T˙VS˙T˙T˙V
23 6 11 22 mpbi2and KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙T˙V
24 14 2 4 hlatjcl KHLSATAS˙TBaseK
25 7 13 8 24 syl3anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙TBaseK
26 simp1r KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VWH
27 14 5 lhpbase WHWBaseK
28 26 27 syl KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VWBaseK
29 14 1 3 latmlem1 KLatS˙TBaseKT˙VBaseKWBaseKS˙T˙T˙VS˙T˙W˙T˙V˙W
30 12 25 20 28 29 syl13anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙T˙VS˙T˙W˙T˙V˙W
31 23 30 mpd KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙W˙T˙V˙W
32 simp1 KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VKHLWH
33 simp22 KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VTA¬T˙W
34 eqid 0.K=0.K
35 1 3 34 4 5 lhpmat KHLWHTA¬T˙WT˙W=0.K
36 32 33 35 syl2anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VT˙W=0.K
37 36 oveq1d KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VT˙W˙V=0.K˙V
38 simp23r KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VV˙W
39 14 1 2 3 4 atmod4i1 KHLVATBaseKWBaseKV˙WT˙W˙V=T˙V˙W
40 7 9 18 28 38 39 syl131anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VT˙W˙V=T˙V˙W
41 hlol KHLKOL
42 7 41 syl KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VKOL
43 14 4 atbase VAVBaseK
44 9 43 syl KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VVBaseK
45 14 2 34 olj02 KOLVBaseK0.K˙V=V
46 42 44 45 syl2anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙V0.K˙V=V
47 37 40 46 3eqtr3d KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VT˙V˙W=V
48 31 47 breqtrd KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙W˙V
49 hlatl KHLKAtLat
50 7 49 syl KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VKAtLat
51 simp21r KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙V¬S˙W
52 simp3l KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VST
53 1 2 3 4 5 lhpat KHLWHSA¬S˙WTASTS˙T˙WA
54 7 26 13 51 8 52 53 syl222anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙WA
55 1 4 atcmp KAtLatS˙T˙WAVAS˙T˙W˙VS˙T˙W=V
56 50 54 9 55 syl3anc KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙W˙VS˙T˙W=V
57 48 56 mpbid KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VS˙T˙W=V
58 57 eqcomd KHLWHSA¬S˙WTA¬T˙WVAV˙WSTS˙T˙VV=S˙T˙W