Metamath Proof Explorer


Theorem cdleme23b

Description: Part of proof of Lemma E in Crawley p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012)

Ref Expression
Hypotheses cdleme23.b B=BaseK
cdleme23.l ˙=K
cdleme23.j ˙=joinK
cdleme23.m ˙=meetK
cdleme23.a A=AtomsK
cdleme23.h H=LHypK
cdleme23.v V=S˙T˙X˙W
Assertion cdleme23b KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XVA

Proof

Step Hyp Ref Expression
1 cdleme23.b B=BaseK
2 cdleme23.l ˙=K
3 cdleme23.j ˙=joinK
4 cdleme23.m ˙=meetK
5 cdleme23.a A=AtomsK
6 cdleme23.h H=LHypK
7 cdleme23.v V=S˙T˙X˙W
8 simp11l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XKHL
9 hlol KHLKOL
10 8 9 syl KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XKOL
11 simp12l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XSA
12 simp13l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XTA
13 1 3 5 hlatjcl KHLSATAS˙TB
14 8 11 12 13 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙TB
15 8 hllatd KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XKLat
16 simp2l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XXB
17 simp11r KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XWH
18 1 6 lhpbase WHWB
19 17 18 syl KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XWB
20 1 4 latmcl KLatXBWBX˙WB
21 15 16 19 20 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XX˙WB
22 1 3 latjcl KLatS˙TBX˙WBS˙T˙X˙WB
23 15 14 21 22 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙WB
24 1 4 latmassOLD KOLS˙TBS˙T˙X˙WBWBS˙T˙S˙T˙X˙W˙W=S˙T˙S˙T˙X˙W˙W
25 10 14 23 19 24 syl13anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙S˙T˙X˙W˙W=S˙T˙S˙T˙X˙W˙W
26 1 2 3 latlej1 KLatS˙TBX˙WBS˙T˙S˙T˙X˙W
27 15 14 21 26 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙S˙T˙X˙W
28 1 2 4 latleeqm1 KLatS˙TBS˙T˙X˙WBS˙T˙S˙T˙X˙WS˙T˙S˙T˙X˙W=S˙T
29 15 14 23 28 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙S˙T˙X˙WS˙T˙S˙T˙X˙W=S˙T
30 27 29 mpbid KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙S˙T˙X˙W=S˙T
31 30 oveq1d KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙S˙T˙X˙W˙W=S˙T˙W
32 1 5 atbase SASB
33 11 32 syl KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XSB
34 1 5 atbase TATB
35 12 34 syl KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XTB
36 1 3 latjjdir KLatSBTBX˙WBS˙T˙X˙W=S˙X˙W˙T˙X˙W
37 15 33 35 21 36 syl13anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙W=S˙X˙W˙T˙X˙W
38 simp32 KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙X˙W=X
39 simp33 KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XT˙X˙W=X
40 38 39 oveq12d KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙X˙W˙T˙X˙W=X˙X
41 1 3 latjidm KLatXBX˙X=X
42 15 16 41 syl2anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XX˙X=X
43 37 40 42 3eqtrd KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙W=X
44 43 oveq1d KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙W˙W=X˙W
45 44 oveq2d KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙S˙T˙X˙W˙W=S˙T˙X˙W
46 25 31 45 3eqtr3d KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙W=S˙T˙X˙W
47 simp12r KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=X¬S˙W
48 simp31 KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XST
49 2 3 4 5 6 lhpat KHLWHSA¬S˙WTASTS˙T˙WA
50 8 17 11 47 12 48 49 syl222anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙WA
51 46 50 eqeltrrd KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙WA
52 7 51 eqeltrid KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XVA