Metamath Proof Explorer


Theorem cdleme3c

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙ = K
cdleme1.j ˙ = join K
cdleme1.m ˙ = meet K
cdleme1.a A = Atoms K
cdleme1.h H = LHyp K
cdleme1.u U = P ˙ Q ˙ W
cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
cdleme3c.z 0 ˙ = 0. K
Assertion cdleme3c K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F 0 ˙

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙ = K
2 cdleme1.j ˙ = join K
3 cdleme1.m ˙ = meet K
4 cdleme1.a A = Atoms K
5 cdleme1.h H = LHyp K
6 cdleme1.u U = P ˙ Q ˙ W
7 cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 cdleme3c.z 0 ˙ = 0. K
9 simpll K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W K HL
10 hllat K HL K Lat
11 10 ad2antrr K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W K Lat
12 simpr3l K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R A
13 eqid Base K = Base K
14 13 4 atbase R A R Base K
15 12 14 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R Base K
16 hlop K HL K OP
17 16 ad2antrr K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W K OP
18 13 8 op0cl K OP 0 ˙ Base K
19 17 18 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W 0 ˙ Base K
20 13 2 latjcl K Lat R Base K 0 ˙ Base K R ˙ 0 ˙ Base K
21 11 15 19 20 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ 0 ˙ Base K
22 simpl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W K HL W H
23 simpr1l K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P A
24 simpr2l K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W Q A
25 1 2 3 4 5 6 7 13 cdleme1b K HL W H P A Q A R A F Base K
26 22 23 24 12 25 syl13anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F Base K
27 13 2 latjcl K Lat R Base K F Base K R ˙ F Base K
28 11 15 26 27 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ F Base K
29 13 4 atbase P A P Base K
30 23 29 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P Base K
31 13 4 atbase Q A Q Base K
32 24 31 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W Q Base K
33 13 2 latjcl K Lat P Base K Q Base K P ˙ Q Base K
34 11 30 32 33 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P ˙ Q Base K
35 13 5 lhpbase W H W Base K
36 35 ad2antlr K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W W Base K
37 13 1 3 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
38 11 34 36 37 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P ˙ Q ˙ W ˙ W
39 6 38 eqbrtrid K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W U ˙ W
40 simpr3r K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W ¬ R ˙ W
41 nbrne2 U ˙ W ¬ R ˙ W U R
42 39 40 41 syl2anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W U R
43 42 necomd K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R U
44 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
45 44 3adant3r3 K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W U A
46 eqid K = K
47 2 46 4 atcvr1 K HL R A U A R U R K R ˙ U
48 9 12 45 47 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R U R K R ˙ U
49 43 48 mpbid K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R K R ˙ U
50 hlol K HL K OL
51 50 ad2antrr K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W K OL
52 13 2 8 olj01 K OL R Base K R ˙ 0 ˙ = R
53 51 15 52 syl2anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ 0 ˙ = R
54 simpr3 K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R A ¬ R ˙ W
55 1 2 3 4 5 6 7 cdleme1 K HL W H P A Q A R A ¬ R ˙ W R ˙ F = R ˙ U
56 22 23 24 54 55 syl13anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ F = R ˙ U
57 49 53 56 3brtr4d K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ 0 ˙ K R ˙ F
58 13 46 cvrne K HL R ˙ 0 ˙ Base K R ˙ F Base K R ˙ 0 ˙ K R ˙ F R ˙ 0 ˙ R ˙ F
59 9 21 28 57 58 syl31anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ 0 ˙ R ˙ F
60 oveq2 0 ˙ = F R ˙ 0 ˙ = R ˙ F
61 60 necon3i R ˙ 0 ˙ R ˙ F 0 ˙ F
62 59 61 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W 0 ˙ F
63 62 necomd K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F 0 ˙