Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme1.l | |
|
cdleme1.j | |
||
cdleme1.m | |
||
cdleme1.a | |
||
cdleme1.h | |
||
cdleme1.u | |
||
cdleme1.f | |
||
cdleme3c.z | |
||
Assertion | cdleme3c | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.l | |
|
2 | cdleme1.j | |
|
3 | cdleme1.m | |
|
4 | cdleme1.a | |
|
5 | cdleme1.h | |
|
6 | cdleme1.u | |
|
7 | cdleme1.f | |
|
8 | cdleme3c.z | |
|
9 | simpll | |
|
10 | hllat | |
|
11 | 10 | ad2antrr | |
12 | simpr3l | |
|
13 | eqid | |
|
14 | 13 4 | atbase | |
15 | 12 14 | syl | |
16 | hlop | |
|
17 | 16 | ad2antrr | |
18 | 13 8 | op0cl | |
19 | 17 18 | syl | |
20 | 13 2 | latjcl | |
21 | 11 15 19 20 | syl3anc | |
22 | simpl | |
|
23 | simpr1l | |
|
24 | simpr2l | |
|
25 | 1 2 3 4 5 6 7 13 | cdleme1b | |
26 | 22 23 24 12 25 | syl13anc | |
27 | 13 2 | latjcl | |
28 | 11 15 26 27 | syl3anc | |
29 | 13 4 | atbase | |
30 | 23 29 | syl | |
31 | 13 4 | atbase | |
32 | 24 31 | syl | |
33 | 13 2 | latjcl | |
34 | 11 30 32 33 | syl3anc | |
35 | 13 5 | lhpbase | |
36 | 35 | ad2antlr | |
37 | 13 1 3 | latmle2 | |
38 | 11 34 36 37 | syl3anc | |
39 | 6 38 | eqbrtrid | |
40 | simpr3r | |
|
41 | nbrne2 | |
|
42 | 39 40 41 | syl2anc | |
43 | 42 | necomd | |
44 | 1 2 3 4 5 6 | lhpat2 | |
45 | 44 | 3adant3r3 | |
46 | eqid | |
|
47 | 2 46 4 | atcvr1 | |
48 | 9 12 45 47 | syl3anc | |
49 | 43 48 | mpbid | |
50 | hlol | |
|
51 | 50 | ad2antrr | |
52 | 13 2 8 | olj01 | |
53 | 51 15 52 | syl2anc | |
54 | simpr3 | |
|
55 | 1 2 3 4 5 6 7 | cdleme1 | |
56 | 22 23 24 54 55 | syl13anc | |
57 | 49 53 56 | 3brtr4d | |
58 | 13 46 | cvrne | |
59 | 9 21 28 57 58 | syl31anc | |
60 | oveq2 | |
|
61 | 60 | necon3i | |
62 | 59 61 | syl | |
63 | 62 | necomd | |