Metamath Proof Explorer


Theorem cdleme3c

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙=K
cdleme1.j ˙=joinK
cdleme1.m ˙=meetK
cdleme1.a A=AtomsK
cdleme1.h H=LHypK
cdleme1.u U=P˙Q˙W
cdleme1.f F=R˙U˙Q˙P˙R˙W
cdleme3c.z 0˙=0.K
Assertion cdleme3c KHLWHPA¬P˙WQAPQRA¬R˙WF0˙

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙=K
2 cdleme1.j ˙=joinK
3 cdleme1.m ˙=meetK
4 cdleme1.a A=AtomsK
5 cdleme1.h H=LHypK
6 cdleme1.u U=P˙Q˙W
7 cdleme1.f F=R˙U˙Q˙P˙R˙W
8 cdleme3c.z 0˙=0.K
9 simpll KHLWHPA¬P˙WQAPQRA¬R˙WKHL
10 hllat KHLKLat
11 10 ad2antrr KHLWHPA¬P˙WQAPQRA¬R˙WKLat
12 simpr3l KHLWHPA¬P˙WQAPQRA¬R˙WRA
13 eqid BaseK=BaseK
14 13 4 atbase RARBaseK
15 12 14 syl KHLWHPA¬P˙WQAPQRA¬R˙WRBaseK
16 hlop KHLKOP
17 16 ad2antrr KHLWHPA¬P˙WQAPQRA¬R˙WKOP
18 13 8 op0cl KOP0˙BaseK
19 17 18 syl KHLWHPA¬P˙WQAPQRA¬R˙W0˙BaseK
20 13 2 latjcl KLatRBaseK0˙BaseKR˙0˙BaseK
21 11 15 19 20 syl3anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙0˙BaseK
22 simpl KHLWHPA¬P˙WQAPQRA¬R˙WKHLWH
23 simpr1l KHLWHPA¬P˙WQAPQRA¬R˙WPA
24 simpr2l KHLWHPA¬P˙WQAPQRA¬R˙WQA
25 1 2 3 4 5 6 7 13 cdleme1b KHLWHPAQARAFBaseK
26 22 23 24 12 25 syl13anc KHLWHPA¬P˙WQAPQRA¬R˙WFBaseK
27 13 2 latjcl KLatRBaseKFBaseKR˙FBaseK
28 11 15 26 27 syl3anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙FBaseK
29 13 4 atbase PAPBaseK
30 23 29 syl KHLWHPA¬P˙WQAPQRA¬R˙WPBaseK
31 13 4 atbase QAQBaseK
32 24 31 syl KHLWHPA¬P˙WQAPQRA¬R˙WQBaseK
33 13 2 latjcl KLatPBaseKQBaseKP˙QBaseK
34 11 30 32 33 syl3anc KHLWHPA¬P˙WQAPQRA¬R˙WP˙QBaseK
35 13 5 lhpbase WHWBaseK
36 35 ad2antlr KHLWHPA¬P˙WQAPQRA¬R˙WWBaseK
37 13 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
38 11 34 36 37 syl3anc KHLWHPA¬P˙WQAPQRA¬R˙WP˙Q˙W˙W
39 6 38 eqbrtrid KHLWHPA¬P˙WQAPQRA¬R˙WU˙W
40 simpr3r KHLWHPA¬P˙WQAPQRA¬R˙W¬R˙W
41 nbrne2 U˙W¬R˙WUR
42 39 40 41 syl2anc KHLWHPA¬P˙WQAPQRA¬R˙WUR
43 42 necomd KHLWHPA¬P˙WQAPQRA¬R˙WRU
44 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
45 44 3adant3r3 KHLWHPA¬P˙WQAPQRA¬R˙WUA
46 eqid K=K
47 2 46 4 atcvr1 KHLRAUARURKR˙U
48 9 12 45 47 syl3anc KHLWHPA¬P˙WQAPQRA¬R˙WRURKR˙U
49 43 48 mpbid KHLWHPA¬P˙WQAPQRA¬R˙WRKR˙U
50 hlol KHLKOL
51 50 ad2antrr KHLWHPA¬P˙WQAPQRA¬R˙WKOL
52 13 2 8 olj01 KOLRBaseKR˙0˙=R
53 51 15 52 syl2anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙0˙=R
54 simpr3 KHLWHPA¬P˙WQAPQRA¬R˙WRA¬R˙W
55 1 2 3 4 5 6 7 cdleme1 KHLWHPAQARA¬R˙WR˙F=R˙U
56 22 23 24 54 55 syl13anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙F=R˙U
57 49 53 56 3brtr4d KHLWHPA¬P˙WQAPQRA¬R˙WR˙0˙KR˙F
58 13 46 cvrne KHLR˙0˙BaseKR˙FBaseKR˙0˙KR˙FR˙0˙R˙F
59 9 21 28 57 58 syl31anc KHLWHPA¬P˙WQAPQRA¬R˙WR˙0˙R˙F
60 oveq2 0˙=FR˙0˙=R˙F
61 60 necon3i R˙0˙R˙F0˙F
62 59 61 syl KHLWHPA¬P˙WQAPQRA¬R˙W0˙F
63 62 necomd KHLWHPA¬P˙WQAPQRA¬R˙WF0˙