| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme1.l |
|
| 2 |
|
cdleme1.j |
|
| 3 |
|
cdleme1.m |
|
| 4 |
|
cdleme1.a |
|
| 5 |
|
cdleme1.h |
|
| 6 |
|
cdleme1.u |
|
| 7 |
|
cdleme1.f |
|
| 8 |
|
cdleme3c.z |
|
| 9 |
|
simpll |
|
| 10 |
|
hllat |
|
| 11 |
10
|
ad2antrr |
|
| 12 |
|
simpr3l |
|
| 13 |
|
eqid |
|
| 14 |
13 4
|
atbase |
|
| 15 |
12 14
|
syl |
|
| 16 |
|
hlop |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
13 8
|
op0cl |
|
| 19 |
17 18
|
syl |
|
| 20 |
13 2
|
latjcl |
|
| 21 |
11 15 19 20
|
syl3anc |
|
| 22 |
|
simpl |
|
| 23 |
|
simpr1l |
|
| 24 |
|
simpr2l |
|
| 25 |
1 2 3 4 5 6 7 13
|
cdleme1b |
|
| 26 |
22 23 24 12 25
|
syl13anc |
|
| 27 |
13 2
|
latjcl |
|
| 28 |
11 15 26 27
|
syl3anc |
|
| 29 |
13 4
|
atbase |
|
| 30 |
23 29
|
syl |
|
| 31 |
13 4
|
atbase |
|
| 32 |
24 31
|
syl |
|
| 33 |
13 2
|
latjcl |
|
| 34 |
11 30 32 33
|
syl3anc |
|
| 35 |
13 5
|
lhpbase |
|
| 36 |
35
|
ad2antlr |
|
| 37 |
13 1 3
|
latmle2 |
|
| 38 |
11 34 36 37
|
syl3anc |
|
| 39 |
6 38
|
eqbrtrid |
|
| 40 |
|
simpr3r |
|
| 41 |
|
nbrne2 |
|
| 42 |
39 40 41
|
syl2anc |
|
| 43 |
42
|
necomd |
|
| 44 |
1 2 3 4 5 6
|
lhpat2 |
|
| 45 |
44
|
3adant3r3 |
|
| 46 |
|
eqid |
|
| 47 |
2 46 4
|
atcvr1 |
|
| 48 |
9 12 45 47
|
syl3anc |
|
| 49 |
43 48
|
mpbid |
|
| 50 |
|
hlol |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
13 2 8
|
olj01 |
|
| 53 |
51 15 52
|
syl2anc |
|
| 54 |
|
simpr3 |
|
| 55 |
1 2 3 4 5 6 7
|
cdleme1 |
|
| 56 |
22 23 24 54 55
|
syl13anc |
|
| 57 |
49 53 56
|
3brtr4d |
|
| 58 |
13 46
|
cvrne |
|
| 59 |
9 21 28 57 58
|
syl31anc |
|
| 60 |
|
oveq2 |
|
| 61 |
60
|
necon3i |
|
| 62 |
59 61
|
syl |
|
| 63 |
62
|
necomd |
|