Metamath Proof Explorer


Theorem cdleme3g

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙=K
cdleme1.j ˙=joinK
cdleme1.m ˙=meetK
cdleme1.a A=AtomsK
cdleme1.h H=LHypK
cdleme1.u U=P˙Q˙W
cdleme1.f F=R˙U˙Q˙P˙R˙W
cdleme3.3 V=P˙R˙W
Assertion cdleme3g KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFU

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙=K
2 cdleme1.j ˙=joinK
3 cdleme1.m ˙=meetK
4 cdleme1.a A=AtomsK
5 cdleme1.h H=LHypK
6 cdleme1.u U=P˙Q˙W
7 cdleme1.f F=R˙U˙Q˙P˙R˙W
8 cdleme3.3 V=P˙R˙W
9 1 2 3 4 5 6 7 8 cdleme3d F=R˙U˙Q˙V
10 simp1l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKHL
11 10 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKLat
12 simp23l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRA
13 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKHLWH
14 simp21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPA¬P˙W
15 simp22l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQA
16 simp3l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPQ
17 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
18 13 14 15 16 17 syl112anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QUA
19 eqid BaseK=BaseK
20 19 2 4 hlatjcl KHLRAUAR˙UBaseK
21 10 12 18 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙UBaseK
22 simp3r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬R˙P˙Q
23 12 22 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRA¬R˙P˙Q
24 1 2 3 4 5 6 7 8 cdleme3e KHLWHPA¬P˙WQARA¬R˙P˙QVA
25 13 14 15 23 24 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QVA
26 19 2 4 hlatjcl KHLQAVAQ˙VBaseK
27 10 15 25 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQ˙VBaseK
28 19 1 3 latmle2 KLatR˙UBaseKQ˙VBaseKR˙U˙Q˙V˙Q˙V
29 11 21 27 28 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙U˙Q˙V˙Q˙V
30 9 29 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF˙Q˙V
31 simp22r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬Q˙W
32 simp23 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRA¬R˙W
33 simp3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPQ¬R˙P˙Q
34 1 2 3 4 5 6 8 cdleme0e KHLWHPA¬P˙WQARA¬R˙WPQ¬R˙P˙QUV
35 13 14 15 32 33 34 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QUV
36 1 2 4 hlatexch2 KHLUAQAVAUVU˙Q˙VQ˙U˙V
37 10 18 15 25 35 36 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QU˙Q˙VQ˙U˙V
38 simp21l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPA
39 19 2 4 hlatjcl KHLPAQAP˙QBaseK
40 10 38 15 39 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙QBaseK
41 simp1r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QWH
42 19 5 lhpbase WHWBaseK
43 41 42 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QWBaseK
44 19 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
45 11 40 43 44 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙Q˙W˙W
46 6 45 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QU˙W
47 19 2 4 hlatjcl KHLPARAP˙RBaseK
48 10 38 12 47 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙RBaseK
49 19 1 3 latmle2 KLatP˙RBaseKWBaseKP˙R˙W˙W
50 11 48 43 49 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙R˙W˙W
51 8 50 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QV˙W
52 19 4 atbase UAUBaseK
53 18 52 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QUBaseK
54 19 4 atbase VAVBaseK
55 25 54 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QVBaseK
56 19 1 2 latjle12 KLatUBaseKVBaseKWBaseKU˙WV˙WU˙V˙W
57 11 53 55 43 56 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QU˙WV˙WU˙V˙W
58 46 51 57 mpbi2and KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QU˙V˙W
59 19 4 atbase QAQBaseK
60 15 59 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQBaseK
61 19 2 4 hlatjcl KHLUAVAU˙VBaseK
62 10 18 25 61 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QU˙VBaseK
63 19 1 lattr KLatQBaseKU˙VBaseKWBaseKQ˙U˙VU˙V˙WQ˙W
64 11 60 62 43 63 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQ˙U˙VU˙V˙WQ˙W
65 58 64 mpan2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQ˙U˙VQ˙W
66 37 65 syld KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QU˙Q˙VQ˙W
67 31 66 mtod KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬U˙Q˙V
68 nbrne2 F˙Q˙V¬U˙Q˙VFU
69 30 67 68 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFU