Metamath Proof Explorer


Theorem cdlemednpq

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. D represents s_2. (Contributed by NM, 18-Nov-2012)

Ref Expression
Hypotheses cdlemeda.l ˙=K
cdlemeda.j ˙=joinK
cdlemeda.m ˙=meetK
cdlemeda.a A=AtomsK
cdlemeda.h H=LHypK
cdlemeda.d D=R˙S˙W
Assertion cdlemednpq KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬D˙P˙Q

Proof

Step Hyp Ref Expression
1 cdlemeda.l ˙=K
2 cdlemeda.j ˙=joinK
3 cdlemeda.m ˙=meetK
4 cdlemeda.a A=AtomsK
5 cdlemeda.h H=LHypK
6 cdlemeda.d D=R˙S˙W
7 simp1l KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHL
8 7 hllatd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKLat
9 simp23l KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA
10 simp31l KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSA
11 eqid BaseK=BaseK
12 11 2 4 hlatjcl KHLRASAR˙SBaseK
13 7 9 10 12 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙SBaseK
14 simp1r KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QWH
15 11 5 lhpbase WHWBaseK
16 14 15 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QWBaseK
17 11 1 3 latmle2 KLatR˙SBaseKWBaseKR˙S˙W˙W
18 8 13 16 17 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙S˙W˙W
19 6 18 eqbrtrid KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙W
20 simp23r KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬R˙W
21 nbrne2 D˙W¬R˙WDR
22 19 20 21 syl2anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QDR
23 8 adantr KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QKLat
24 13 adantr KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QR˙SBaseK
25 16 adantr KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QWBaseK
26 11 1 3 latmle1 KLatR˙SBaseKWBaseKR˙S˙W˙R˙S
27 23 24 25 26 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QR˙S˙W˙R˙S
28 6 27 eqbrtrid KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QD˙R˙S
29 simpr KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QD˙P˙Q
30 simp31r KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬S˙W
31 simp32 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙P˙Q
32 simp33 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬S˙P˙Q
33 1 2 3 4 5 6 cdlemeda KHLWHSA¬S˙WRAR˙P˙Q¬S˙P˙QDA
34 7 14 10 30 9 31 32 33 syl223anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QDA
35 11 4 atbase DADBaseK
36 34 35 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QDBaseK
37 36 adantr KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QDBaseK
38 simp21 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPA
39 simp22 KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QQA
40 11 2 4 hlatjcl KHLPAQAP˙QBaseK
41 7 38 39 40 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QP˙QBaseK
42 41 adantr KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QP˙QBaseK
43 11 1 3 latlem12 KLatDBaseKR˙SBaseKP˙QBaseKD˙R˙SD˙P˙QD˙R˙S˙P˙Q
44 23 37 24 42 43 syl13anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QD˙R˙SD˙P˙QD˙R˙S˙P˙Q
45 28 29 44 mpbi2and KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QD˙R˙S˙P˙Q
46 hlatl KHLKAtLat
47 7 46 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKAtLat
48 eqid 0.K=0.K
49 11 1 3 48 4 atnle KAtLatSAP˙QBaseK¬S˙P˙QS˙P˙Q=0.K
50 47 10 41 49 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬S˙P˙QS˙P˙Q=0.K
51 32 50 mpbid KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QS˙P˙Q=0.K
52 51 oveq2d KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙S˙P˙Q=R˙0.K
53 11 4 atbase SASBaseK
54 10 53 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSBaseK
55 11 1 2 3 4 atmod1i1 KHLRASBaseKP˙QBaseKR˙P˙QR˙S˙P˙Q=R˙S˙P˙Q
56 7 9 54 41 31 55 syl131anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙S˙P˙Q=R˙S˙P˙Q
57 hlol KHLKOL
58 7 57 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKOL
59 11 4 atbase RARBaseK
60 9 59 syl KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRBaseK
61 11 2 48 olj01 KOLRBaseKR˙0.K=R
62 58 60 61 syl2anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙0.K=R
63 52 56 62 3eqtr3d KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙S˙P˙Q=R
64 63 adantr KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QR˙S˙P˙Q=R
65 45 64 breqtrd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QD˙R
66 65 ex KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QD˙R
67 1 4 atcmp KAtLatDARAD˙RD=R
68 47 34 9 67 syl3anc KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙RD=R
69 66 68 sylibd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QD˙P˙QD=R
70 69 necon3ad KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QDR¬D˙P˙Q
71 22 70 mpd KHLWHPAQARA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬D˙P˙Q