Metamath Proof Explorer


Theorem cdlemg10bALTN

Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
Assertion cdlemg10bALTN KHLWHFTPA¬P˙WQA¬Q˙WFP˙FQ˙W=P˙Q˙W

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 simp11 KHLWHFTPA¬P˙WQA¬Q˙WKHL
8 simp12 KHLWHFTPA¬P˙WQA¬Q˙WWH
9 7 8 jca KHLWHFTPA¬P˙WQA¬Q˙WKHLWH
10 3simpc KHLWHFTPA¬P˙WQA¬Q˙WPA¬P˙WQA¬Q˙W
11 simp13 KHLWHFTPA¬P˙WQA¬Q˙WFT
12 eqid P˙Q˙W=P˙Q˙W
13 5 6 1 2 4 3 12 cdlemg2k KHLWHPA¬P˙WQA¬Q˙WFTFP˙FQ=FP˙P˙Q˙W
14 9 10 11 13 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFP˙FQ=FP˙P˙Q˙W
15 14 oveq1d KHLWHFTPA¬P˙WQA¬Q˙WFP˙FQ˙W=FP˙P˙Q˙W˙W
16 simp2 KHLWHFTPA¬P˙WQA¬Q˙WPA¬P˙W
17 1 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
18 9 11 16 17 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFPA¬FP˙W
19 eqid 0.K=0.K
20 1 3 19 4 5 lhpmat KHLWHFPA¬FP˙WFP˙W=0.K
21 9 18 20 syl2anc KHLWHFTPA¬P˙WQA¬Q˙WFP˙W=0.K
22 21 oveq1d KHLWHFTPA¬P˙WQA¬Q˙WFP˙W˙P˙Q˙W=0.K˙P˙Q˙W
23 simp2l KHLWHFTPA¬P˙WQA¬Q˙WPA
24 1 4 5 6 ltrnat KHLWHFTPAFPA
25 9 11 23 24 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WFPA
26 7 hllatd KHLWHFTPA¬P˙WQA¬Q˙WKLat
27 simp3l KHLWHFTPA¬P˙WQA¬Q˙WQA
28 eqid BaseK=BaseK
29 28 2 4 hlatjcl KHLPAQAP˙QBaseK
30 7 23 27 29 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙QBaseK
31 28 5 lhpbase WHWBaseK
32 8 31 syl KHLWHFTPA¬P˙WQA¬Q˙WWBaseK
33 28 3 latmcl KLatP˙QBaseKWBaseKP˙Q˙WBaseK
34 26 30 32 33 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙Q˙WBaseK
35 28 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
36 26 30 32 35 syl3anc KHLWHFTPA¬P˙WQA¬Q˙WP˙Q˙W˙W
37 28 1 2 3 4 atmod4i2 KHLFPAP˙Q˙WBaseKWBaseKP˙Q˙W˙WFP˙W˙P˙Q˙W=FP˙P˙Q˙W˙W
38 7 25 34 32 36 37 syl131anc KHLWHFTPA¬P˙WQA¬Q˙WFP˙W˙P˙Q˙W=FP˙P˙Q˙W˙W
39 hlol KHLKOL
40 7 39 syl KHLWHFTPA¬P˙WQA¬Q˙WKOL
41 28 2 19 olj02 KOLP˙Q˙WBaseK0.K˙P˙Q˙W=P˙Q˙W
42 40 34 41 syl2anc KHLWHFTPA¬P˙WQA¬Q˙W0.K˙P˙Q˙W=P˙Q˙W
43 22 38 42 3eqtr3d KHLWHFTPA¬P˙WQA¬Q˙WFP˙P˙Q˙W˙W=P˙Q˙W
44 15 43 eqtrd KHLWHFTPA¬P˙WQA¬Q˙WFP˙FQ˙W=P˙Q˙W