Metamath Proof Explorer


Theorem cdlemg17dALTN

Description: Same as cdlemg17dN with fewer antecedents but longer proof TODO: fix comment. (Contributed by NM, 9-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg17dALTN KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRG=P˙Q˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp3l KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRG˙P˙Q
9 simp11 KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPKHL
10 simp12 KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPWH
11 simp13 KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPGT
12 1 5 6 7 trlle KHLWHGTRG˙W
13 9 10 11 12 syl21anc KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRG˙W
14 9 hllatd KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPKLat
15 eqid BaseK=BaseK
16 15 5 6 7 trlcl KHLWHGTRGBaseK
17 9 10 11 16 syl21anc KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRGBaseK
18 simp21l KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPPA
19 simp22 KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPQA
20 15 2 4 hlatjcl KHLPAQAP˙QBaseK
21 9 18 19 20 syl3anc KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPP˙QBaseK
22 15 5 lhpbase WHWBaseK
23 10 22 syl KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPWBaseK
24 15 1 3 latlem12 KLatRGBaseKP˙QBaseKWBaseKRG˙P˙QRG˙WRG˙P˙Q˙W
25 14 17 21 23 24 syl13anc KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRG˙P˙QRG˙WRG˙P˙Q˙W
26 8 13 25 mpbi2and KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRG˙P˙Q˙W
27 hlatl KHLKAtLat
28 9 27 syl KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPKAtLat
29 simp21 KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPPA¬P˙W
30 simp3r KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPGPP
31 1 4 5 6 7 trlat KHLWHPA¬P˙WGTGPPRGA
32 9 10 29 11 30 31 syl212anc KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRGA
33 simp23 KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPPQ
34 1 2 3 4 5 lhpat KHLWHPA¬P˙WQAPQP˙Q˙WA
35 9 10 29 19 33 34 syl212anc KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPP˙Q˙WA
36 1 4 atcmp KAtLatRGAP˙Q˙WARG˙P˙Q˙WRG=P˙Q˙W
37 28 32 35 36 syl3anc KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRG˙P˙Q˙WRG=P˙Q˙W
38 26 37 mpbid KHLWHGTPA¬P˙WQAPQRG˙P˙QGPPRG=P˙Q˙W