Metamath Proof Explorer


Theorem cdlemk37

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b B=BaseK
cdlemk4.l ˙=K
cdlemk4.j ˙=joinK
cdlemk4.m ˙=meetK
cdlemk4.a A=AtomsK
cdlemk4.h H=LHypK
cdlemk4.t T=LTrnKW
cdlemk4.r R=trLKW
cdlemk4.z Z=P˙Rb˙NP˙RbF-1
cdlemk4.y Y=P˙RG˙Z˙RGb-1
cdlemk4.x X=ιzT|bTbIBRbRFRbRGzP=Y
Assertion cdlemk37 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP˙P˙RG

Proof

Step Hyp Ref Expression
1 cdlemk4.b B=BaseK
2 cdlemk4.l ˙=K
3 cdlemk4.j ˙=joinK
4 cdlemk4.m ˙=meetK
5 cdlemk4.a A=AtomsK
6 cdlemk4.h H=LHypK
7 cdlemk4.t T=LTrnKW
8 cdlemk4.r R=trLKW
9 cdlemk4.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk4.y Y=P˙RG˙Z˙RGb-1
11 cdlemk4.x X=ιzT|bTbIBRbRFRbRGzP=Y
12 1 2 3 4 5 6 7 8 9 10 11 cdlemk36 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP=Y
13 simp11l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGKHL
14 13 hllatd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGKLat
15 simp22l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGPA
16 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGKHLWH
17 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGGT
18 simp13r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGGIB
19 1 5 6 7 8 trlnidat KHLWHGTGIBRGA
20 16 17 18 19 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGRGA
21 1 3 5 hlatjcl KHLPARGAP˙RGB
22 13 15 20 21 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGP˙RGB
23 simp3l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbT
24 simp3r1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbIB
25 1 5 6 7 8 trlnidat KHLWHbTbIBRbA
26 16 23 24 25 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGRbA
27 1 3 5 hlatjcl KHLPARbAP˙RbB
28 13 15 26 27 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGP˙RbB
29 simp21 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGNT
30 2 5 6 7 ltrnat KHLWHNTPANPA
31 16 29 15 30 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGNPA
32 1 5 atbase NPANPB
33 31 32 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGNPB
34 simp12l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGFT
35 6 7 ltrncnv KHLWHFTF-1T
36 16 34 35 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGF-1T
37 6 7 ltrnco KHLWHbTF-1TbF-1T
38 16 23 36 37 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbF-1T
39 1 6 7 8 trlcl KHLWHbF-1TRbF-1B
40 16 38 39 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGRbF-1B
41 1 3 latjcl KLatNPBRbF-1BNP˙RbF-1B
42 14 33 40 41 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGNP˙RbF-1B
43 1 4 latmcl KLatP˙RbBNP˙RbF-1BP˙Rb˙NP˙RbF-1B
44 14 28 42 43 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGP˙Rb˙NP˙RbF-1B
45 9 44 eqeltrid KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGZB
46 6 7 ltrncnv KHLWHbTb-1T
47 16 23 46 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGb-1T
48 6 7 ltrnco KHLWHGTb-1TGb-1T
49 16 17 47 48 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGGb-1T
50 1 6 7 8 trlcl KHLWHGb-1TRGb-1B
51 16 49 50 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGRGb-1B
52 1 3 latjcl KLatZBRGb-1BZ˙RGb-1B
53 14 45 51 52 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGZ˙RGb-1B
54 1 2 4 latmle1 KLatP˙RGBZ˙RGb-1BP˙RG˙Z˙RGb-1˙P˙RG
55 14 22 53 54 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGP˙RG˙Z˙RGb-1˙P˙RG
56 10 55 eqbrtrid KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGY˙P˙RG
57 12 56 eqbrtrd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGXP˙P˙RG