Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk4.b |
|
2 |
|
cdlemk4.l |
|
3 |
|
cdlemk4.j |
|
4 |
|
cdlemk4.m |
|
5 |
|
cdlemk4.a |
|
6 |
|
cdlemk4.h |
|
7 |
|
cdlemk4.t |
|
8 |
|
cdlemk4.r |
|
9 |
|
cdlemk4.z |
|
10 |
|
cdlemk4.y |
|
11 |
|
cdlemk4.x |
|
12 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk36 |
|
13 |
|
simp11l |
|
14 |
13
|
hllatd |
|
15 |
|
simp22l |
|
16 |
|
simp11 |
|
17 |
|
simp13l |
|
18 |
|
simp13r |
|
19 |
1 5 6 7 8
|
trlnidat |
|
20 |
16 17 18 19
|
syl3anc |
|
21 |
1 3 5
|
hlatjcl |
|
22 |
13 15 20 21
|
syl3anc |
|
23 |
|
simp3l |
|
24 |
|
simp3r1 |
|
25 |
1 5 6 7 8
|
trlnidat |
|
26 |
16 23 24 25
|
syl3anc |
|
27 |
1 3 5
|
hlatjcl |
|
28 |
13 15 26 27
|
syl3anc |
|
29 |
|
simp21 |
|
30 |
2 5 6 7
|
ltrnat |
|
31 |
16 29 15 30
|
syl3anc |
|
32 |
1 5
|
atbase |
|
33 |
31 32
|
syl |
|
34 |
|
simp12l |
|
35 |
6 7
|
ltrncnv |
|
36 |
16 34 35
|
syl2anc |
|
37 |
6 7
|
ltrnco |
|
38 |
16 23 36 37
|
syl3anc |
|
39 |
1 6 7 8
|
trlcl |
|
40 |
16 38 39
|
syl2anc |
|
41 |
1 3
|
latjcl |
|
42 |
14 33 40 41
|
syl3anc |
|
43 |
1 4
|
latmcl |
|
44 |
14 28 42 43
|
syl3anc |
|
45 |
9 44
|
eqeltrid |
|
46 |
6 7
|
ltrncnv |
|
47 |
16 23 46
|
syl2anc |
|
48 |
6 7
|
ltrnco |
|
49 |
16 17 47 48
|
syl3anc |
|
50 |
1 6 7 8
|
trlcl |
|
51 |
16 49 50
|
syl2anc |
|
52 |
1 3
|
latjcl |
|
53 |
14 45 51 52
|
syl3anc |
|
54 |
1 2 4
|
latmle1 |
|
55 |
14 22 53 54
|
syl3anc |
|
56 |
10 55
|
eqbrtrid |
|
57 |
12 56
|
eqbrtrd |
|