Metamath Proof Explorer


Theorem cdlemk37

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b B = Base K
cdlemk4.l ˙ = K
cdlemk4.j ˙ = join K
cdlemk4.m ˙ = meet K
cdlemk4.a A = Atoms K
cdlemk4.h H = LHyp K
cdlemk4.t T = LTrn K W
cdlemk4.r R = trL K W
cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
Assertion cdlemk37 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P ˙ P ˙ R G

Proof

Step Hyp Ref Expression
1 cdlemk4.b B = Base K
2 cdlemk4.l ˙ = K
3 cdlemk4.j ˙ = join K
4 cdlemk4.m ˙ = meet K
5 cdlemk4.a A = Atoms K
6 cdlemk4.h H = LHyp K
7 cdlemk4.t T = LTrn K W
8 cdlemk4.r R = trL K W
9 cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
11 cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
12 1 2 3 4 5 6 7 8 9 10 11 cdlemk36 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P = Y
13 simp11l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G K HL
14 13 hllatd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G K Lat
15 simp22l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G P A
16 simp11 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G K HL W H
17 simp13l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G T
18 simp13r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G I B
19 1 5 6 7 8 trlnidat K HL W H G T G I B R G A
20 16 17 18 19 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G R G A
21 1 3 5 hlatjcl K HL P A R G A P ˙ R G B
22 13 15 20 21 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G P ˙ R G B
23 simp3l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G b T
24 simp3r1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G b I B
25 1 5 6 7 8 trlnidat K HL W H b T b I B R b A
26 16 23 24 25 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G R b A
27 1 3 5 hlatjcl K HL P A R b A P ˙ R b B
28 13 15 26 27 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G P ˙ R b B
29 simp21 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G N T
30 2 5 6 7 ltrnat K HL W H N T P A N P A
31 16 29 15 30 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G N P A
32 1 5 atbase N P A N P B
33 31 32 syl K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G N P B
34 simp12l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G F T
35 6 7 ltrncnv K HL W H F T F -1 T
36 16 34 35 syl2anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G F -1 T
37 6 7 ltrnco K HL W H b T F -1 T b F -1 T
38 16 23 36 37 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G b F -1 T
39 1 6 7 8 trlcl K HL W H b F -1 T R b F -1 B
40 16 38 39 syl2anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G R b F -1 B
41 1 3 latjcl K Lat N P B R b F -1 B N P ˙ R b F -1 B
42 14 33 40 41 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G N P ˙ R b F -1 B
43 1 4 latmcl K Lat P ˙ R b B N P ˙ R b F -1 B P ˙ R b ˙ N P ˙ R b F -1 B
44 14 28 42 43 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G P ˙ R b ˙ N P ˙ R b F -1 B
45 9 44 eqeltrid K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G Z B
46 6 7 ltrncnv K HL W H b T b -1 T
47 16 23 46 syl2anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G b -1 T
48 6 7 ltrnco K HL W H G T b -1 T G b -1 T
49 16 17 47 48 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G b -1 T
50 1 6 7 8 trlcl K HL W H G b -1 T R G b -1 B
51 16 49 50 syl2anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G R G b -1 B
52 1 3 latjcl K Lat Z B R G b -1 B Z ˙ R G b -1 B
53 14 45 51 52 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G Z ˙ R G b -1 B
54 1 2 4 latmle1 K Lat P ˙ R G B Z ˙ R G b -1 B P ˙ R G ˙ Z ˙ R G b -1 ˙ P ˙ R G
55 14 22 53 54 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G P ˙ R G ˙ Z ˙ R G b -1 ˙ P ˙ R G
56 10 55 eqbrtrid K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G Y ˙ P ˙ R G
57 12 56 eqbrtrd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P ˙ P ˙ R G