Metamath Proof Explorer


Theorem cdlemkid3N

Description: Lemma for cdlemkid . (Contributed by NM, 25-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemkid3N KHLWHFTNTRF=RNPA¬P˙WG=IBG/gX=ιzT|bTbIBRbRFRbRGzP=P

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp3r KHLWHFTNTRF=RNPA¬P˙WG=IBG=IB
13 1 6 7 idltrn KHLWHIBT
14 13 3ad2ant1 KHLWHFTNTRF=RNPA¬P˙WG=IBIBT
15 12 14 eqeltrd KHLWHFTNTRF=RNPA¬P˙WG=IBGT
16 11 csbeq2i G/gX=G/gιzT|bTbIBRbRFRbRgzP=Y
17 csbriota G/gιzT|bTbIBRbRFRbRgzP=Y=ιzT|[˙G/g]˙bTbIBRbRFRbRgzP=Y
18 17 a1i GTG/gιzT|bTbIBRbRFRbRgzP=Y=ιzT|[˙G/g]˙bTbIBRbRFRbRgzP=Y
19 16 18 eqtrid GTG/gX=ιzT|[˙G/g]˙bTbIBRbRFRbRgzP=Y
20 sbcralg GT[˙G/g]˙bTbIBRbRFRbRgzP=YbT[˙G/g]˙bIBRbRFRbRgzP=Y
21 sbcimg GT[˙G/g]˙bIBRbRFRbRgzP=Y[˙G/g]˙bIBRbRFRbRg[˙G/g]˙zP=Y
22 sbc3an [˙G/g]˙bIBRbRFRbRg[˙G/g]˙bIB[˙G/g]˙RbRF[˙G/g]˙RbRg
23 sbcg GT[˙G/g]˙bIBbIB
24 sbcg GT[˙G/g]˙RbRFRbRF
25 sbcne12 [˙G/g]˙RbRgG/gRbG/gRg
26 csbconstg GTG/gRb=Rb
27 csbfv G/gRg=RG
28 27 a1i GTG/gRg=RG
29 26 28 neeq12d GTG/gRbG/gRgRbRG
30 25 29 bitrid GT[˙G/g]˙RbRgRbRG
31 23 24 30 3anbi123d GT[˙G/g]˙bIB[˙G/g]˙RbRF[˙G/g]˙RbRgbIBRbRFRbRG
32 22 31 bitrid GT[˙G/g]˙bIBRbRFRbRgbIBRbRFRbRG
33 sbceq2g GT[˙G/g]˙zP=YzP=G/gY
34 32 33 imbi12d GT[˙G/g]˙bIBRbRFRbRg[˙G/g]˙zP=YbIBRbRFRbRGzP=G/gY
35 21 34 bitrd GT[˙G/g]˙bIBRbRFRbRgzP=YbIBRbRFRbRGzP=G/gY
36 35 ralbidv GTbT[˙G/g]˙bIBRbRFRbRgzP=YbTbIBRbRFRbRGzP=G/gY
37 20 36 bitrd GT[˙G/g]˙bTbIBRbRFRbRgzP=YbTbIBRbRFRbRGzP=G/gY
38 37 riotabidv GTιzT|[˙G/g]˙bTbIBRbRFRbRgzP=Y=ιzT|bTbIBRbRFRbRGzP=G/gY
39 19 38 eqtrd GTG/gX=ιzT|bTbIBRbRFRbRGzP=G/gY
40 15 39 syl KHLWHFTNTRF=RNPA¬P˙WG=IBG/gX=ιzT|bTbIBRbRFRbRGzP=G/gY
41 simp11 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGKHLWH
42 simp12 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGFTNTRF=RN
43 simp13l KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGPA¬P˙W
44 simp13r KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGG=IB
45 simp2 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGbT
46 simp31 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGbIB
47 45 46 jca KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGbTbIB
48 1 2 3 4 5 6 7 8 9 10 cdlemkid2 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBG/gY=P
49 41 42 43 44 47 48 syl113anc KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGG/gY=P
50 49 3expa KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGG/gY=P
51 50 eqeq2d KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGzP=G/gYzP=P
52 51 pm5.74da KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGzP=G/gYbIBRbRFRbRGzP=P
53 52 ralbidva KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGzP=G/gYbTbIBRbRFRbRGzP=P
54 53 riotabidv KHLWHFTNTRF=RNPA¬P˙WG=IBιzT|bTbIBRbRFRbRGzP=G/gY=ιzT|bTbIBRbRFRbRGzP=P
55 40 54 eqtrd KHLWHFTNTRF=RNPA¬P˙WG=IBG/gX=ιzT|bTbIBRbRFRbRGzP=P