Metamath Proof Explorer


Theorem cdlemn8

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses cdlemn8.b B=BaseK
cdlemn8.l ˙=K
cdlemn8.a A=AtomsK
cdlemn8.h H=LHypK
cdlemn8.p P=ocKW
cdlemn8.o O=hTIB
cdlemn8.t T=LTrnKW
cdlemn8.e E=TEndoKW
cdlemn8.u U=DVecHKW
cdlemn8.s +˙=+U
cdlemn8.f F=ιhT|hP=Q
cdlemn8.g G=ιhT|hP=R
Assertion cdlemn8 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOg=GF-1

Proof

Step Hyp Ref Expression
1 cdlemn8.b B=BaseK
2 cdlemn8.l ˙=K
3 cdlemn8.a A=AtomsK
4 cdlemn8.h H=LHypK
5 cdlemn8.p P=ocKW
6 cdlemn8.o O=hTIB
7 cdlemn8.t T=LTrnKW
8 cdlemn8.e E=TEndoKW
9 cdlemn8.u U=DVecHKW
10 cdlemn8.s +˙=+U
11 cdlemn8.f F=ιhT|hP=Q
12 cdlemn8.g G=ιhT|hP=R
13 coass F-1Fg=F-1Fg
14 simp1 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOKHLWH
15 2 3 4 5 lhpocnel2 KHLWHPA¬P˙W
16 15 3ad2ant1 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOPA¬P˙W
17 simp2l KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOQA¬Q˙W
18 2 3 4 7 11 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
19 14 16 17 18 syl3anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOFT
20 1 4 7 ltrn1o KHLWHFTF:B1-1 ontoB
21 14 19 20 syl2anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF:B1-1 ontoB
22 f1ococnv1 F:B1-1 ontoBF-1F=IB
23 21 22 syl KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF-1F=IB
24 23 coeq1d KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF-1Fg=IBg
25 simp32 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOgT
26 1 4 7 ltrn1o KHLWHgTg:B1-1 ontoB
27 14 25 26 syl2anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOg:B1-1 ontoB
28 f1of g:B1-1 ontoBg:BB
29 fcoi2 g:BBIBg=g
30 27 28 29 3syl KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOIBg=g
31 24 30 eqtr2d KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOg=F-1Fg
32 1 2 3 4 5 6 7 8 9 10 11 12 cdlemn7 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOG=sFgIT=s
33 32 simpld KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOG=sFg
34 32 simprd KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOIT=s
35 34 fveq1d KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOITF=sF
36 fvresi FTITF=F
37 19 36 syl KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOITF=F
38 35 37 eqtr3d KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOsF=F
39 38 coeq1d KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOsFg=Fg
40 33 39 eqtrd KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOG=Fg
41 40 coeq2d KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF-1G=F-1Fg
42 13 31 41 3eqtr4a KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOg=F-1G
43 4 7 ltrncnv KHLWHFTF-1T
44 14 19 43 syl2anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF-1T
45 simp2r KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gORA¬R˙W
46 2 3 4 7 12 ltrniotacl KHLWHPA¬P˙WRA¬R˙WGT
47 14 16 45 46 syl3anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOGT
48 4 7 ltrncom KHLWHF-1TGTF-1G=GF-1
49 14 44 47 48 syl3anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF-1G=GF-1
50 42 49 eqtrd KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOg=GF-1