Metamath Proof Explorer


Theorem cdlemn8

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 26-Feb-2014)

Ref Expression
Hypotheses cdlemn8.b B = Base K
cdlemn8.l ˙ = K
cdlemn8.a A = Atoms K
cdlemn8.h H = LHyp K
cdlemn8.p P = oc K W
cdlemn8.o O = h T I B
cdlemn8.t T = LTrn K W
cdlemn8.e E = TEndo K W
cdlemn8.u U = DVecH K W
cdlemn8.s + ˙ = + U
cdlemn8.f F = ι h T | h P = Q
cdlemn8.g G = ι h T | h P = R
Assertion cdlemn8 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g = G F -1

Proof

Step Hyp Ref Expression
1 cdlemn8.b B = Base K
2 cdlemn8.l ˙ = K
3 cdlemn8.a A = Atoms K
4 cdlemn8.h H = LHyp K
5 cdlemn8.p P = oc K W
6 cdlemn8.o O = h T I B
7 cdlemn8.t T = LTrn K W
8 cdlemn8.e E = TEndo K W
9 cdlemn8.u U = DVecH K W
10 cdlemn8.s + ˙ = + U
11 cdlemn8.f F = ι h T | h P = Q
12 cdlemn8.g G = ι h T | h P = R
13 coass F -1 F g = F -1 F g
14 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O K HL W H
15 2 3 4 5 lhpocnel2 K HL W H P A ¬ P ˙ W
16 15 3ad2ant1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O P A ¬ P ˙ W
17 simp2l K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O Q A ¬ Q ˙ W
18 2 3 4 7 11 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T
19 14 16 17 18 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F T
20 1 4 7 ltrn1o K HL W H F T F : B 1-1 onto B
21 14 19 20 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F : B 1-1 onto B
22 f1ococnv1 F : B 1-1 onto B F -1 F = I B
23 21 22 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F -1 F = I B
24 23 coeq1d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F -1 F g = I B g
25 simp32 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g T
26 1 4 7 ltrn1o K HL W H g T g : B 1-1 onto B
27 14 25 26 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g : B 1-1 onto B
28 f1of g : B 1-1 onto B g : B B
29 fcoi2 g : B B I B g = g
30 27 28 29 3syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O I B g = g
31 24 30 eqtr2d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g = F -1 F g
32 1 2 3 4 5 6 7 8 9 10 11 12 cdlemn7 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G = s F g I T = s
33 32 simpld K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G = s F g
34 32 simprd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O I T = s
35 34 fveq1d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O I T F = s F
36 fvresi F T I T F = F
37 19 36 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O I T F = F
38 35 37 eqtr3d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O s F = F
39 38 coeq1d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O s F g = F g
40 33 39 eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G = F g
41 40 coeq2d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F -1 G = F -1 F g
42 13 31 41 3eqtr4a K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g = F -1 G
43 4 7 ltrncnv K HL W H F T F -1 T
44 14 19 43 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F -1 T
45 simp2r K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O R A ¬ R ˙ W
46 2 3 4 7 12 ltrniotacl K HL W H P A ¬ P ˙ W R A ¬ R ˙ W G T
47 14 16 45 46 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G T
48 4 7 ltrncom K HL W H F -1 T G T F -1 G = G F -1
49 14 44 47 48 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F -1 G = G F -1
50 42 49 eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g = G F -1