| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difeq2 |
|
| 2 |
1
|
eleq1d |
|
| 3 |
2
|
elrab |
|
| 4 |
|
velpw |
|
| 5 |
4
|
anbi1i |
|
| 6 |
3 5
|
bitri |
|
| 7 |
6
|
a1i |
|
| 8 |
|
simp1 |
|
| 9 |
|
ssdif0 |
|
| 10 |
|
0fi |
|
| 11 |
|
eleq1 |
|
| 12 |
10 11
|
mpbiri |
|
| 13 |
9 12
|
sylbi |
|
| 14 |
|
difeq2 |
|
| 15 |
14
|
eleq1d |
|
| 16 |
15
|
sbcieg |
|
| 17 |
16
|
biimpar |
|
| 18 |
13 17
|
sylan2 |
|
| 19 |
18
|
3adant3 |
|
| 20 |
|
0ex |
|
| 21 |
|
difeq2 |
|
| 22 |
21
|
eleq1d |
|
| 23 |
20 22
|
sbcie |
|
| 24 |
|
dif0 |
|
| 25 |
24
|
eleq1i |
|
| 26 |
23 25
|
sylbb |
|
| 27 |
26
|
con3i |
|
| 28 |
27
|
3ad2ant3 |
|
| 29 |
|
sscon |
|
| 30 |
|
ssfi |
|
| 31 |
30
|
expcom |
|
| 32 |
29 31
|
syl |
|
| 33 |
|
vex |
|
| 34 |
|
difeq2 |
|
| 35 |
34
|
eleq1d |
|
| 36 |
33 35
|
sbcie |
|
| 37 |
|
vex |
|
| 38 |
|
difeq2 |
|
| 39 |
38
|
eleq1d |
|
| 40 |
37 39
|
sbcie |
|
| 41 |
32 36 40
|
3imtr4g |
|
| 42 |
41
|
3ad2ant3 |
|
| 43 |
|
difindi |
|
| 44 |
|
unfi |
|
| 45 |
43 44
|
eqeltrid |
|
| 46 |
45
|
a1i |
|
| 47 |
40 36
|
anbi12i |
|
| 48 |
37
|
inex1 |
|
| 49 |
|
difeq2 |
|
| 50 |
49
|
eleq1d |
|
| 51 |
48 50
|
sbcie |
|
| 52 |
46 47 51
|
3imtr4g |
|
| 53 |
7 8 19 28 42 52
|
isfild |
|