Metamath Proof Explorer


Theorem cfinfil

Description: Relative complements of the finite parts of an infinite set is a filter. When A = NN the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion cfinfil XVAX¬AFinx𝒫X|AxFinFilX

Proof

Step Hyp Ref Expression
1 difeq2 x=yAx=Ay
2 1 eleq1d x=yAxFinAyFin
3 2 elrab yx𝒫X|AxFiny𝒫XAyFin
4 velpw y𝒫XyX
5 4 anbi1i y𝒫XAyFinyXAyFin
6 3 5 bitri yx𝒫X|AxFinyXAyFin
7 6 a1i XVAX¬AFinyx𝒫X|AxFinyXAyFin
8 simp1 XVAX¬AFinXV
9 ssdif0 AXAX=
10 0fin Fin
11 eleq1 AX=AXFinFin
12 10 11 mpbiri AX=AXFin
13 9 12 sylbi AXAXFin
14 difeq2 y=XAy=AX
15 14 eleq1d y=XAyFinAXFin
16 15 sbcieg XV[˙X/y]˙AyFinAXFin
17 16 biimpar XVAXFin[˙X/y]˙AyFin
18 13 17 sylan2 XVAX[˙X/y]˙AyFin
19 18 3adant3 XVAX¬AFin[˙X/y]˙AyFin
20 0ex V
21 difeq2 y=Ay=A
22 21 eleq1d y=AyFinAFin
23 20 22 sbcie [˙/y]˙AyFinAFin
24 dif0 A=A
25 24 eleq1i AFinAFin
26 23 25 sylbb [˙/y]˙AyFinAFin
27 26 con3i ¬AFin¬[˙/y]˙AyFin
28 27 3ad2ant3 XVAX¬AFin¬[˙/y]˙AyFin
29 sscon wzAzAw
30 ssfi AwFinAzAwAzFin
31 30 expcom AzAwAwFinAzFin
32 29 31 syl wzAwFinAzFin
33 vex wV
34 difeq2 y=wAy=Aw
35 34 eleq1d y=wAyFinAwFin
36 33 35 sbcie [˙w/y]˙AyFinAwFin
37 vex zV
38 difeq2 y=zAy=Az
39 38 eleq1d y=zAyFinAzFin
40 37 39 sbcie [˙z/y]˙AyFinAzFin
41 32 36 40 3imtr4g wz[˙w/y]˙AyFin[˙z/y]˙AyFin
42 41 3ad2ant3 XVAX¬AFinzXwz[˙w/y]˙AyFin[˙z/y]˙AyFin
43 difindi Azw=AzAw
44 unfi AzFinAwFinAzAwFin
45 43 44 eqeltrid AzFinAwFinAzwFin
46 45 a1i XVAX¬AFinzXwXAzFinAwFinAzwFin
47 40 36 anbi12i [˙z/y]˙AyFin[˙w/y]˙AyFinAzFinAwFin
48 37 inex1 zwV
49 difeq2 y=zwAy=Azw
50 49 eleq1d y=zwAyFinAzwFin
51 48 50 sbcie [˙zw/y]˙AyFinAzwFin
52 46 47 51 3imtr4g XVAX¬AFinzXwX[˙z/y]˙AyFin[˙w/y]˙AyFin[˙zw/y]˙AyFin
53 7 8 19 28 42 52 isfild XVAX¬AFinx𝒫X|AxFinFilX