Metamath Proof Explorer


Theorem chpo1ubb

Description: The psi function is upper bounded by a linear term. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Assertion chpo1ubb c+x+ψxcx

Proof

Step Hyp Ref Expression
1 rpssre +
2 1 a1i +
3 1red 1
4 simpr x+x+
5 4 rpred x+x
6 chpcl xψx
7 5 6 syl x+ψx
8 7 4 rerpdivcld x+ψxx
9 chpo1ub x+ψxx𝑂1
10 9 a1i x+ψxx𝑂1
11 8 10 o1lo1d x+ψxx𝑂1
12 chpcl yψy
13 12 ad2antrl y1yψy
14 13 rehalfcld y1yψy2
15 5 adantr x+y1yx<yx
16 chpeq0 xψx=0x<2
17 15 16 syl x+y1yx<yψx=0x<2
18 17 biimpar x+y1yx<yx<2ψx=0
19 18 oveq1d x+y1yx<yx<2ψxx=0x
20 4 adantr x+y1yx<yx+
21 20 rpcnd x+y1yx<yx
22 20 rpne0d x+y1yx<yx0
23 21 22 div0d x+y1yx<y0x=0
24 13 ad2ant2r x+y1yx<yψy
25 2rp 2+
26 25 a1i x+y1yx<y2+
27 simprll x+y1yx<yy
28 chpge0 y0ψy
29 27 28 syl x+y1yx<y0ψy
30 24 26 29 divge0d x+y1yx<y0ψy2
31 23 30 eqbrtrd x+y1yx<y0xψy2
32 31 adantr x+y1yx<yx<20xψy2
33 19 32 eqbrtrd x+y1yx<yx<2ψxxψy2
34 7 ad2antrr x+y1yx<y2xψx
35 24 adantr x+y1yx<y2xψy
36 25 a1i x+y1yx<y2x2+
37 15 adantr x+y1yx<y2xx
38 chpge0 x0ψx
39 37 38 syl x+y1yx<y2x0ψx
40 27 adantr x+y1yx<y2xy
41 simprr x+y1yx<yx<y
42 15 27 41 ltled x+y1yx<yxy
43 42 adantr x+y1yx<y2xxy
44 chpwordi xyxyψxψy
45 37 40 43 44 syl3anc x+y1yx<y2xψxψy
46 simpr x+y1yx<y2x2x
47 34 35 36 37 39 45 46 lediv12ad x+y1yx<y2xψxxψy2
48 2re 2
49 48 a1i x+y1yx<y2
50 33 47 15 49 ltlecasei x+y1yx<yψxxψy2
51 2 3 8 11 14 50 lo1bddrp c+x+ψxxc
52 51 mptru c+x+ψxxc
53 simpr c+x+x+
54 53 rpred c+x+x
55 54 6 syl c+x+ψx
56 simpl c+x+c+
57 56 rpred c+x+c
58 55 57 53 ledivmul2d c+x+ψxxcψxcx
59 58 ralbidva c+x+ψxxcx+ψxcx
60 59 rexbiia c+x+ψxxcc+x+ψxcx
61 52 60 mpbi c+x+ψxcx