Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chscl.1 | |
|
chscl.2 | |
||
chscl.3 | |
||
chscl.4 | |
||
chscl.5 | |
||
chscl.6 | |
||
chscllem3.7 | |
||
chscllem3.8 | |
||
chscllem3.9 | |
||
chscllem3.10 | |
||
Assertion | chscllem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chscl.1 | |
|
2 | chscl.2 | |
|
3 | chscl.3 | |
|
4 | chscl.4 | |
|
5 | chscl.5 | |
|
6 | chscl.6 | |
|
7 | chscllem3.7 | |
|
8 | chscllem3.8 | |
|
9 | chscllem3.9 | |
|
10 | chscllem3.10 | |
|
11 | 2fveq3 | |
|
12 | fvex | |
|
13 | 11 6 12 | fvmpt | |
14 | 7 13 | syl | |
15 | 14 | eqcomd | |
16 | chsh | |
|
17 | 2 16 | syl | |
18 | chsh | |
|
19 | 1 18 | syl | |
20 | shocsh | |
|
21 | 19 20 | syl | |
22 | shless | |
|
23 | 17 21 19 3 22 | syl31anc | |
24 | shscom | |
|
25 | 19 17 24 | syl2anc | |
26 | shscom | |
|
27 | 19 21 26 | syl2anc | |
28 | 23 25 27 | 3sstr4d | |
29 | 4 7 | ffvelcdmd | |
30 | 28 29 | sseldd | |
31 | pjpreeq | |
|
32 | 1 30 31 | syl2anc | |
33 | 15 32 | mpbid | |
34 | 33 | simprd | |
35 | 19 | adantr | |
36 | 21 | adantr | |
37 | ocin | |
|
38 | 19 37 | syl | |
39 | 38 | adantr | |
40 | 8 | adantr | |
41 | 3 | adantr | |
42 | 9 | adantr | |
43 | 41 42 | sseldd | |
44 | 1 2 3 4 5 6 | chscllem1 | |
45 | 44 7 | ffvelcdmd | |
46 | 45 | adantr | |
47 | simprl | |
|
48 | 10 | adantr | |
49 | simprr | |
|
50 | 48 49 | eqtr3d | |
51 | 35 36 39 40 43 46 47 50 | shuni | |
52 | 51 | simpld | |
53 | 34 52 | rexlimddv | |