Metamath Proof Explorer


Theorem chto1ub

Description: The theta function is upper bounded by a linear term. Corollary of chtub . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chto1ub x+θxx𝑂1

Proof

Step Hyp Ref Expression
1 rpssre +
2 1 a1i +
3 rpre x+x
4 chtcl xθx
5 3 4 syl x+θx
6 rerpdivcl θxx+θxx
7 5 6 mpancom x+θxx
8 7 recnd x+θxx
9 8 adantl x+θxx
10 3re 3
11 10 a1i 3
12 2rp 2+
13 relogcl 2+log2
14 12 13 ax-mp log2
15 2re 2
16 14 15 remulcli log22
17 16 a1i log22
18 chtge0 x0θx
19 3 18 syl x+0θx
20 rpregt0 x+x0<x
21 divge0 θx0θxx0<x0θxx
22 5 19 20 21 syl21anc x+0θxx
23 7 22 absidd x+θxx=θxx
24 23 adantr x+3xθxx=θxx
25 7 adantr x+3xθxx
26 16 a1i x+3xlog22
27 5 adantr x+3xθx
28 3 adantr x+3xx
29 remulcl 2x2x
30 15 28 29 sylancr x+3x2x
31 resubcl 2x32x3
32 30 10 31 sylancl x+3x2x3
33 remulcl log22x3log22x3
34 14 32 33 sylancr x+3xlog22x3
35 remulcl log22xlog22x
36 14 30 35 sylancr x+3xlog22x
37 15 a1i x+3x2
38 10 a1i x+3x3
39 2lt3 2<3
40 39 a1i x+3x2<3
41 simpr x+3x3x
42 37 38 28 40 41 ltletrd x+3x2<x
43 chtub x2<xθx<log22x3
44 28 42 43 syl2anc x+3xθx<log22x3
45 3rp 3+
46 ltsubrp 2x3+2x3<2x
47 30 45 46 sylancl x+3x2x3<2x
48 1lt2 1<2
49 rplogcl 21<2log2+
50 15 48 49 mp2an log2+
51 elrp log2+log20<log2
52 50 51 mpbi log20<log2
53 52 a1i x+3xlog20<log2
54 ltmul2 2x32xlog20<log22x3<2xlog22x3<log22x
55 32 30 53 54 syl3anc x+3x2x3<2xlog22x3<log22x
56 47 55 mpbid x+3xlog22x3<log22x
57 27 34 36 44 56 lttrd x+3xθx<log22x
58 14 recni log2
59 58 a1i x+3xlog2
60 2cnd x+3x2
61 3 recnd x+x
62 61 adantr x+3xx
63 59 60 62 mulassd x+3xlog22x=log22x
64 57 63 breqtrrd x+3xθx<log22x
65 20 adantr x+3xx0<x
66 ltdivmul2 θxlog22x0<xθxx<log22θx<log22x
67 27 26 65 66 syl3anc x+3xθxx<log22θx<log22x
68 64 67 mpbird x+3xθxx<log22
69 25 26 68 ltled x+3xθxxlog22
70 24 69 eqbrtrd x+3xθxxlog22
71 70 adantl x+3xθxxlog22
72 2 9 11 17 71 elo1d x+θxx𝑂1
73 72 mptru x+θxx𝑂1