Metamath Proof Explorer


Theorem cldbnd

Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009)

Ref Expression
Hypothesis opnbnd.1 X = J
Assertion cldbnd J Top A X A Clsd J cls J A cls J X A A

Proof

Step Hyp Ref Expression
1 opnbnd.1 X = J
2 1 iscld3 J Top A X A Clsd J cls J A = A
3 eqimss cls J A = A cls J A A
4 2 3 syl6bi J Top A X A Clsd J cls J A A
5 ssinss1 cls J A A cls J A cls J X A A
6 4 5 syl6 J Top A X A Clsd J cls J A cls J X A A
7 sslin cls J A cls J X A A X A cls J A cls J X A X A A
8 7 adantl J Top A X cls J A cls J X A A X A cls J A cls J X A X A A
9 incom X A A = A X A
10 disjdif A X A =
11 9 10 eqtri X A A =
12 sseq0 X A cls J A cls J X A X A A X A A = X A cls J A cls J X A =
13 8 11 12 sylancl J Top A X cls J A cls J X A A X A cls J A cls J X A =
14 13 ex J Top A X cls J A cls J X A A X A cls J A cls J X A =
15 incom cls J A cls J X A = cls J X A cls J A
16 dfss4 A X X X A = A
17 fveq2 X X A = A cls J X X A = cls J A
18 17 eqcomd X X A = A cls J A = cls J X X A
19 16 18 sylbi A X cls J A = cls J X X A
20 19 adantl J Top A X cls J A = cls J X X A
21 20 ineq2d J Top A X cls J X A cls J A = cls J X A cls J X X A
22 15 21 syl5eq J Top A X cls J A cls J X A = cls J X A cls J X X A
23 22 ineq2d J Top A X X A cls J A cls J X A = X A cls J X A cls J X X A
24 23 eqeq1d J Top A X X A cls J A cls J X A = X A cls J X A cls J X X A =
25 difss X A X
26 1 opnbnd J Top X A X X A J X A cls J X A cls J X X A =
27 25 26 mpan2 J Top X A J X A cls J X A cls J X X A =
28 27 adantr J Top A X X A J X A cls J X A cls J X X A =
29 24 28 bitr4d J Top A X X A cls J A cls J X A = X A J
30 1 opncld J Top X A J X X A Clsd J
31 30 ex J Top X A J X X A Clsd J
32 31 adantr J Top A X X A J X X A Clsd J
33 eleq1 X X A = A X X A Clsd J A Clsd J
34 16 33 sylbi A X X X A Clsd J A Clsd J
35 34 adantl J Top A X X X A Clsd J A Clsd J
36 32 35 sylibd J Top A X X A J A Clsd J
37 29 36 sylbid J Top A X X A cls J A cls J X A = A Clsd J
38 14 37 syld J Top A X cls J A cls J X A A A Clsd J
39 6 38 impbid J Top A X A Clsd J cls J A cls J X A A