Metamath Proof Explorer


Theorem cldssbrsiga

Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017)

Ref Expression
Assertion cldssbrsiga JTopClsdJ𝛔J

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 cldss xClsdJxJ
3 2 adantl JTopxClsdJxJ
4 dfss4 xJJJx=x
5 3 4 sylib JTopxClsdJJJx=x
6 1 topopn JTopJJ
7 1 difopn JJxClsdJJxJ
8 6 7 sylan JTopxClsdJJxJ
9 id JTopJTop
10 9 sgsiga JTop𝛔JransigAlgebra
11 10 adantr JTopJxJ𝛔JransigAlgebra
12 elex JTopJV
13 sigagensiga JV𝛔JsigAlgebraJ
14 baselsiga 𝛔JsigAlgebraJJ𝛔J
15 12 13 14 3syl JTopJ𝛔J
16 15 adantr JTopJxJJ𝛔J
17 elsigagen JTopJxJJx𝛔J
18 difelsiga 𝛔JransigAlgebraJ𝛔JJx𝛔JJJx𝛔J
19 11 16 17 18 syl3anc JTopJxJJJx𝛔J
20 8 19 syldan JTopxClsdJJJx𝛔J
21 5 20 eqeltrrd JTopxClsdJx𝛔J
22 21 ex JTopxClsdJx𝛔J
23 22 ssrdv JTopClsdJ𝛔J