Metamath Proof Explorer


Theorem cldssbrsiga

Description: A Borel Algebra contains all closed sets of its base topology. (Contributed by Thierry Arnoux, 27-Mar-2017)

Ref Expression
Assertion cldssbrsiga J Top Clsd J 𝛔 J

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 cldss x Clsd J x J
3 2 adantl J Top x Clsd J x J
4 dfss4 x J J J x = x
5 3 4 sylib J Top x Clsd J J J x = x
6 1 topopn J Top J J
7 1 difopn J J x Clsd J J x J
8 6 7 sylan J Top x Clsd J J x J
9 id J Top J Top
10 9 sgsiga J Top 𝛔 J ran sigAlgebra
11 10 adantr J Top J x J 𝛔 J ran sigAlgebra
12 elex J Top J V
13 sigagensiga J V 𝛔 J sigAlgebra J
14 baselsiga 𝛔 J sigAlgebra J J 𝛔 J
15 12 13 14 3syl J Top J 𝛔 J
16 15 adantr J Top J x J J 𝛔 J
17 elsigagen J Top J x J J x 𝛔 J
18 difelsiga 𝛔 J ran sigAlgebra J 𝛔 J J x 𝛔 J J J x 𝛔 J
19 11 16 17 18 syl3anc J Top J x J J J x 𝛔 J
20 8 19 syldan J Top x Clsd J J J x 𝛔 J
21 5 20 eqeltrrd J Top x Clsd J x 𝛔 J
22 21 ex J Top x Clsd J x 𝛔 J
23 22 ssrdv J Top Clsd J 𝛔 J