Metamath Proof Explorer


Theorem clim

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . This means that for any real x , no matter how small, there always exists an integer j such that the absolute difference of any later complex number in the sequence and the limit is less than x . (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses clim.1 φ F V
clim.3 φ k F k = B
Assertion clim φ F A A x + j k j B B A < x

Proof

Step Hyp Ref Expression
1 clim.1 φ F V
2 clim.3 φ k F k = B
3 climrel Rel
4 3 brrelex2i F A A V
5 4 a1i φ F A A V
6 elex A A V
7 6 adantr A x + j k j F k F k A < x A V
8 7 a1i φ A x + j k j F k F k A < x A V
9 simpr f = F y = A y = A
10 9 eleq1d f = F y = A y A
11 fveq1 f = F f k = F k
12 11 adantr f = F y = A f k = F k
13 12 eleq1d f = F y = A f k F k
14 oveq12 f k = F k y = A f k y = F k A
15 11 14 sylan f = F y = A f k y = F k A
16 15 fveq2d f = F y = A f k y = F k A
17 16 breq1d f = F y = A f k y < x F k A < x
18 13 17 anbi12d f = F y = A f k f k y < x F k F k A < x
19 18 ralbidv f = F y = A k j f k f k y < x k j F k F k A < x
20 19 rexbidv f = F y = A j k j f k f k y < x j k j F k F k A < x
21 20 ralbidv f = F y = A x + j k j f k f k y < x x + j k j F k F k A < x
22 10 21 anbi12d f = F y = A y x + j k j f k f k y < x A x + j k j F k F k A < x
23 df-clim = f y | y x + j k j f k f k y < x
24 22 23 brabga F V A V F A A x + j k j F k F k A < x
25 24 ex F V A V F A A x + j k j F k F k A < x
26 1 25 syl φ A V F A A x + j k j F k F k A < x
27 5 8 26 pm5.21ndd φ F A A x + j k j F k F k A < x
28 eluzelz k j k
29 2 eleq1d φ k F k B
30 2 fvoveq1d φ k F k A = B A
31 30 breq1d φ k F k A < x B A < x
32 29 31 anbi12d φ k F k F k A < x B B A < x
33 28 32 sylan2 φ k j F k F k A < x B B A < x
34 33 ralbidva φ k j F k F k A < x k j B B A < x
35 34 rexbidv φ j k j F k F k A < x j k j B B A < x
36 35 ralbidv φ x + j k j F k F k A < x x + j k j B B A < x
37 36 anbi2d φ A x + j k j F k F k A < x A x + j k j B B A < x
38 27 37 bitrd φ F A A x + j k j B B A < x