Metamath Proof Explorer


Theorem clim

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . This means that for any real x , no matter how small, there always exists an integer j such that the absolute difference of any later complex number in the sequence and the limit is less than x . (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses clim.1 φFV
clim.3 φkFk=B
Assertion clim φFAAx+jkjBBA<x

Proof

Step Hyp Ref Expression
1 clim.1 φFV
2 clim.3 φkFk=B
3 climrel Rel
4 3 brrelex2i FAAV
5 4 a1i φFAAV
6 elex AAV
7 6 adantr Ax+jkjFkFkA<xAV
8 7 a1i φAx+jkjFkFkA<xAV
9 simpr f=Fy=Ay=A
10 9 eleq1d f=Fy=AyA
11 fveq1 f=Ffk=Fk
12 11 adantr f=Fy=Afk=Fk
13 12 eleq1d f=Fy=AfkFk
14 oveq12 fk=Fky=Afky=FkA
15 11 14 sylan f=Fy=Afky=FkA
16 15 fveq2d f=Fy=Afky=FkA
17 16 breq1d f=Fy=Afky<xFkA<x
18 13 17 anbi12d f=Fy=Afkfky<xFkFkA<x
19 18 ralbidv f=Fy=Akjfkfky<xkjFkFkA<x
20 19 rexbidv f=Fy=Ajkjfkfky<xjkjFkFkA<x
21 20 ralbidv f=Fy=Ax+jkjfkfky<xx+jkjFkFkA<x
22 10 21 anbi12d f=Fy=Ayx+jkjfkfky<xAx+jkjFkFkA<x
23 df-clim =fy|yx+jkjfkfky<x
24 22 23 brabga FVAVFAAx+jkjFkFkA<x
25 24 ex FVAVFAAx+jkjFkFkA<x
26 1 25 syl φAVFAAx+jkjFkFkA<x
27 5 8 26 pm5.21ndd φFAAx+jkjFkFkA<x
28 eluzelz kjk
29 2 eleq1d φkFkB
30 2 fvoveq1d φkFkA=BA
31 30 breq1d φkFkA<xBA<x
32 29 31 anbi12d φkFkFkA<xBBA<x
33 28 32 sylan2 φkjFkFkA<xBBA<x
34 33 ralbidva φkjFkFkA<xkjBBA<x
35 34 rexbidv φjkjFkFkA<xjkjBBA<x
36 35 ralbidv φx+jkjFkFkA<xx+jkjBBA<x
37 36 anbi2d φAx+jkjFkFkA<xAx+jkjBBA<x
38 27 37 bitrd φFAAx+jkjBBA<x