| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim1fr1.1 |
|
| 2 |
|
clim1fr1.2 |
|
| 3 |
|
clim1fr1.3 |
|
| 4 |
|
clim1fr1.4 |
|
| 5 |
|
nnuz |
|
| 6 |
|
1zzd |
|
| 7 |
|
nnex |
|
| 8 |
7
|
mptex |
|
| 9 |
8
|
a1i |
|
| 10 |
|
1cnd |
|
| 11 |
|
eqidd |
|
| 12 |
|
eqidd |
|
| 13 |
|
id |
|
| 14 |
|
1cnd |
|
| 15 |
11 12 13 14
|
fvmptd |
|
| 16 |
15
|
adantl |
|
| 17 |
5 6 9 10 16
|
climconst |
|
| 18 |
7
|
mptex |
|
| 19 |
1 18
|
eqeltri |
|
| 20 |
19
|
a1i |
|
| 21 |
4
|
adantr |
|
| 22 |
2
|
adantr |
|
| 23 |
|
nncn |
|
| 24 |
23
|
adantl |
|
| 25 |
3
|
adantr |
|
| 26 |
|
nnne0 |
|
| 27 |
26
|
adantl |
|
| 28 |
21 22 24 25 27
|
divdiv1d |
|
| 29 |
28
|
mpteq2dva |
|
| 30 |
4 2 3
|
divcld |
|
| 31 |
|
divcnv |
|
| 32 |
30 31
|
syl |
|
| 33 |
29 32
|
eqbrtrrd |
|
| 34 |
|
eqid |
|
| 35 |
|
1cnd |
|
| 36 |
34 35
|
fmpti |
|
| 37 |
36
|
a1i |
|
| 38 |
37
|
ffvelcdmda |
|
| 39 |
22 24
|
mulcld |
|
| 40 |
22 24 25 27
|
mulne0d |
|
| 41 |
21 39 40
|
divcld |
|
| 42 |
41
|
fmpttd |
|
| 43 |
42
|
ffvelcdmda |
|
| 44 |
|
oveq2 |
|
| 45 |
44
|
oveq1d |
|
| 46 |
45 44
|
oveq12d |
|
| 47 |
|
simpr |
|
| 48 |
2
|
adantr |
|
| 49 |
47
|
nncnd |
|
| 50 |
48 49
|
mulcld |
|
| 51 |
4
|
adantr |
|
| 52 |
50 51
|
addcld |
|
| 53 |
3
|
adantr |
|
| 54 |
47
|
nnne0d |
|
| 55 |
48 49 53 54
|
mulne0d |
|
| 56 |
52 50 55
|
divcld |
|
| 57 |
1 46 47 56
|
fvmptd3 |
|
| 58 |
50 51 50 55
|
divdird |
|
| 59 |
50 55
|
dividd |
|
| 60 |
59
|
oveq1d |
|
| 61 |
58 60
|
eqtrd |
|
| 62 |
16
|
eqcomd |
|
| 63 |
|
eqidd |
|
| 64 |
|
simpr |
|
| 65 |
64
|
oveq2d |
|
| 66 |
65
|
oveq2d |
|
| 67 |
51 50 55
|
divcld |
|
| 68 |
63 66 47 67
|
fvmptd |
|
| 69 |
68
|
eqcomd |
|
| 70 |
62 69
|
oveq12d |
|
| 71 |
57 61 70
|
3eqtrd |
|
| 72 |
5 6 17 20 33 38 43 71
|
climadd |
|
| 73 |
|
1p0e1 |
|
| 74 |
72 73
|
breqtrdi |
|