Metamath Proof Explorer


Theorem clim1fr1

Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses clim1fr1.1 F=nAn+BAn
clim1fr1.2 φA
clim1fr1.3 φA0
clim1fr1.4 φB
Assertion clim1fr1 φF1

Proof

Step Hyp Ref Expression
1 clim1fr1.1 F=nAn+BAn
2 clim1fr1.2 φA
3 clim1fr1.3 φA0
4 clim1fr1.4 φB
5 nnuz =1
6 1zzd φ1
7 nnex V
8 7 mptex n1V
9 8 a1i φn1V
10 1cnd φ1
11 eqidd kn1=n1
12 eqidd kn=k1=1
13 id kk
14 1cnd k1
15 11 12 13 14 fvmptd kn1k=1
16 15 adantl φkn1k=1
17 5 6 9 10 16 climconst φn11
18 7 mptex nAn+BAnV
19 1 18 eqeltri FV
20 19 a1i φFV
21 4 adantr φnB
22 2 adantr φnA
23 nncn nn
24 23 adantl φnn
25 3 adantr φnA0
26 nnne0 nn0
27 26 adantl φnn0
28 21 22 24 25 27 divdiv1d φnBAn=BAn
29 28 mpteq2dva φnBAn=nBAn
30 4 2 3 divcld φBA
31 divcnv BAnBAn0
32 30 31 syl φnBAn0
33 29 32 eqbrtrrd φnBAn0
34 eqid n1=n1
35 1cnd n1
36 34 35 fmpti n1:
37 36 a1i φn1:
38 37 ffvelcdmda φkn1k
39 22 24 mulcld φnAn
40 22 24 25 27 mulne0d φnAn0
41 21 39 40 divcld φnBAn
42 41 fmpttd φnBAn:
43 42 ffvelcdmda φknBAnk
44 oveq2 n=kAn=Ak
45 44 oveq1d n=kAn+B=Ak+B
46 45 44 oveq12d n=kAn+BAn=Ak+BAk
47 simpr φkk
48 2 adantr φkA
49 47 nncnd φkk
50 48 49 mulcld φkAk
51 4 adantr φkB
52 50 51 addcld φkAk+B
53 3 adantr φkA0
54 47 nnne0d φkk0
55 48 49 53 54 mulne0d φkAk0
56 52 50 55 divcld φkAk+BAk
57 1 46 47 56 fvmptd3 φkFk=Ak+BAk
58 50 51 50 55 divdird φkAk+BAk=AkAk+BAk
59 50 55 dividd φkAkAk=1
60 59 oveq1d φkAkAk+BAk=1+BAk
61 58 60 eqtrd φkAk+BAk=1+BAk
62 16 eqcomd φk1=n1k
63 eqidd φknBAn=nBAn
64 simpr φkn=kn=k
65 64 oveq2d φkn=kAn=Ak
66 65 oveq2d φkn=kBAn=BAk
67 51 50 55 divcld φkBAk
68 63 66 47 67 fvmptd φknBAnk=BAk
69 68 eqcomd φkBAk=nBAnk
70 62 69 oveq12d φk1+BAk=n1k+nBAnk
71 57 61 70 3eqtrd φkFk=n1k+nBAnk
72 5 6 17 20 33 38 43 71 climadd φF1+0
73 1p0e1 1+0=1
74 72 73 breqtrdi φF1