Metamath Proof Explorer


Theorem climcn2

Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climcn2.1 Z = M
climcn2.2 φ M
climcn2.3a φ A C
climcn2.3b φ B D
climcn2.4 φ u C v D u F v
climcn2.5a φ G A
climcn2.5b φ H B
climcn2.6 φ K W
climcn2.7 φ x + y + z + u C v D u A < y v B < z u F v A F B < x
climcn2.8a φ k Z G k C
climcn2.8b φ k Z H k D
climcn2.9 φ k Z K k = G k F H k
Assertion climcn2 φ K A F B

Proof

Step Hyp Ref Expression
1 climcn2.1 Z = M
2 climcn2.2 φ M
3 climcn2.3a φ A C
4 climcn2.3b φ B D
5 climcn2.4 φ u C v D u F v
6 climcn2.5a φ G A
7 climcn2.5b φ H B
8 climcn2.6 φ K W
9 climcn2.7 φ x + y + z + u C v D u A < y v B < z u F v A F B < x
10 climcn2.8a φ k Z G k C
11 climcn2.8b φ k Z H k D
12 climcn2.9 φ k Z K k = G k F H k
13 2 adantr φ y + z + M
14 simprl φ y + z + y +
15 eqidd φ y + z + k Z G k = G k
16 6 adantr φ y + z + G A
17 1 13 14 15 16 climi2 φ y + z + j Z k j G k A < y
18 simprr φ y + z + z +
19 eqidd φ y + z + k Z H k = H k
20 7 adantr φ y + z + H B
21 1 13 18 19 20 climi2 φ y + z + j Z k j H k B < z
22 1 rexanuz2 j Z k j G k A < y H k B < z j Z k j G k A < y j Z k j H k B < z
23 17 21 22 sylanbrc φ y + z + j Z k j G k A < y H k B < z
24 1 uztrn2 j Z k j k Z
25 fvoveq1 u = G k u A = G k A
26 25 breq1d u = G k u A < y G k A < y
27 26 anbi1d u = G k u A < y v B < z G k A < y v B < z
28 oveq1 u = G k u F v = G k F v
29 28 fvoveq1d u = G k u F v A F B = G k F v A F B
30 29 breq1d u = G k u F v A F B < x G k F v A F B < x
31 27 30 imbi12d u = G k u A < y v B < z u F v A F B < x G k A < y v B < z G k F v A F B < x
32 fvoveq1 v = H k v B = H k B
33 32 breq1d v = H k v B < z H k B < z
34 33 anbi2d v = H k G k A < y v B < z G k A < y H k B < z
35 oveq2 v = H k G k F v = G k F H k
36 35 fvoveq1d v = H k G k F v A F B = G k F H k A F B
37 36 breq1d v = H k G k F v A F B < x G k F H k A F B < x
38 34 37 imbi12d v = H k G k A < y v B < z G k F v A F B < x G k A < y H k B < z G k F H k A F B < x
39 31 38 rspc2v G k C H k D u C v D u A < y v B < z u F v A F B < x G k A < y H k B < z G k F H k A F B < x
40 10 11 39 syl2anc φ k Z u C v D u A < y v B < z u F v A F B < x G k A < y H k B < z G k F H k A F B < x
41 40 imp φ k Z u C v D u A < y v B < z u F v A F B < x G k A < y H k B < z G k F H k A F B < x
42 41 an32s φ u C v D u A < y v B < z u F v A F B < x k Z G k A < y H k B < z G k F H k A F B < x
43 24 42 sylan2 φ u C v D u A < y v B < z u F v A F B < x j Z k j G k A < y H k B < z G k F H k A F B < x
44 43 anassrs φ u C v D u A < y v B < z u F v A F B < x j Z k j G k A < y H k B < z G k F H k A F B < x
45 44 ralimdva φ u C v D u A < y v B < z u F v A F B < x j Z k j G k A < y H k B < z k j G k F H k A F B < x
46 45 reximdva φ u C v D u A < y v B < z u F v A F B < x j Z k j G k A < y H k B < z j Z k j G k F H k A F B < x
47 46 ex φ u C v D u A < y v B < z u F v A F B < x j Z k j G k A < y H k B < z j Z k j G k F H k A F B < x
48 47 adantr φ y + z + u C v D u A < y v B < z u F v A F B < x j Z k j G k A < y H k B < z j Z k j G k F H k A F B < x
49 23 48 mpid φ y + z + u C v D u A < y v B < z u F v A F B < x j Z k j G k F H k A F B < x
50 49 rexlimdvva φ y + z + u C v D u A < y v B < z u F v A F B < x j Z k j G k F H k A F B < x
51 50 adantr φ x + y + z + u C v D u A < y v B < z u F v A F B < x j Z k j G k F H k A F B < x
52 9 51 mpd φ x + j Z k j G k F H k A F B < x
53 52 ralrimiva φ x + j Z k j G k F H k A F B < x
54 5 3 4 caovcld φ A F B
55 10 11 jca φ k Z G k C H k D
56 5 ralrimivva φ u C v D u F v
57 56 adantr φ k Z u C v D u F v
58 28 eleq1d u = G k u F v G k F v
59 35 eleq1d v = H k G k F v G k F H k
60 58 59 rspc2v G k C H k D u C v D u F v G k F H k
61 55 57 60 sylc φ k Z G k F H k
62 1 2 8 12 54 61 clim2c φ K A F B x + j Z k j G k F H k A F B < x
63 53 62 mpbird φ K A F B