Metamath Proof Explorer


Theorem climliminflimsup

Description: A sequence of real numbers converges if and only if its inferior limit is real and it is greater than or equal to its superior limit (in such a case, they are actually equal, see liminfgelimsupuz ). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsup.1 φM
climliminflimsup.2 Z=M
climliminflimsup.3 φF:Z
Assertion climliminflimsup φFdomlim infFlim supFlim infF

Proof

Step Hyp Ref Expression
1 climliminflimsup.1 φM
2 climliminflimsup.2 Z=M
3 climliminflimsup.3 φF:Z
4 1 adantr φFdomM
5 1 2 3 climliminf φFdomFlim infF
6 5 biimpd φFdomFlim infF
7 6 imp φFdomFlim infF
8 3 adantr φFdomF:Z
9 8 ffvelcdmda φFdomkZFk
10 2 4 7 9 climrecl φFdomlim infF
11 simpr φFdomFdom
12 11 limsupcld φFdomlim supF*
13 4 2 8 11 climliminflimsupd φFdomlim infF=lim supF
14 13 eqcomd φFdomlim supF=lim infF
15 12 14 xreqled φFdomlim supFlim infF
16 10 15 jca φFdomlim infFlim supFlim infF
17 1 adantr φlim infFlim supFlim infFM
18 3 adantr φlim infFlim supFlim infFF:Z
19 simprl φlim infFlim supFlim infFlim infF
20 simprr φlim infFlim supFlim infFlim supFlim infF
21 17 2 18 19 20 liminflimsupclim φlim infFlim supFlim infFFdom
22 16 21 impbida φFdomlim infFlim supFlim infF