Metamath Proof Explorer


Theorem clsk1indlem3

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) has the K3 property of being sub-linear. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k K=r𝒫3𝑜ifr=1𝑜r
Assertion clsk1indlem3 s𝒫3𝑜t𝒫3𝑜KstKsKt

Proof

Step Hyp Ref Expression
1 clsk1indlem.k K=r𝒫3𝑜ifr=1𝑜r
2 elif xifst=1𝑜stst=x1𝑜¬st=xst
3 uneq12 s=t=st=
4 unidm =
5 3 4 eqtrdi s=t=st=
6 an3 s=t=st=x1𝑜s=x1𝑜
7 6 orcd s=t=st=x1𝑜s=x1𝑜¬s=xs
8 7 orcd s=t=st=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
9 8 ex s=t=st=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
10 pm2.24 st=¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
11 10 impd st=¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
12 9 11 jaao s=t=st=st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
13 5 12 mpdan s=t=st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
14 13 a1i s𝒫3𝑜t𝒫3𝑜s=t=st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
15 uneqsn st=s=t=s=t=s=t=
16 df-3or s=t=s=t=s=t=s=t=s=t=s=t=
17 15 16 bitri st=s=t=s=t=s=t=
18 pm2.21 ¬s=s=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
19 18 adantrd ¬s=s=t=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
20 18 adantrd ¬s=s=t=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
21 19 20 jaod ¬s=s=t=s=t=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
22 21 adantr ¬s=¬t=s=t=s=t=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
23 pm2.21 ¬t=t=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
24 23 adantl ¬s=¬t=t=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
25 24 adantld ¬s=¬t=s=t=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
26 22 25 jaod ¬s=¬t=s=t=s=t=s=t=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
27 17 26 biimtrid ¬s=¬t=st=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
28 27 impd ¬s=¬t=st=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
29 elun xstxsxt
30 29 biimpi xstxsxt
31 30 adantl ¬st=xstxsxt
32 andi ¬s=¬t=xsxt¬s=¬t=xs¬s=¬t=xt
33 simpl ¬s=¬t=¬s=
34 33 anim1i ¬s=¬t=xs¬s=xs
35 simpr ¬s=¬t=¬t=
36 35 anim1i ¬s=¬t=xt¬t=xt
37 34 36 orim12i ¬s=¬t=xs¬s=¬t=xt¬s=xs¬t=xt
38 32 37 sylbi ¬s=¬t=xsxt¬s=xs¬t=xt
39 31 38 sylan2 ¬s=¬t=¬st=xst¬s=xs¬t=xt
40 39 olcd ¬s=¬t=¬st=xsts=x1𝑜t=x1𝑜¬s=xs¬t=xt
41 or4 s=x1𝑜t=x1𝑜¬s=xs¬t=xts=x1𝑜¬s=xst=x1𝑜¬t=xt
42 40 41 sylib ¬s=¬t=¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
43 42 ex ¬s=¬t=¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
44 28 43 jaod ¬s=¬t=st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
45 44 a1i s𝒫3𝑜t𝒫3𝑜¬s=¬t=st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
46 14 45 jaod s𝒫3𝑜t𝒫3𝑜s=t=¬s=¬t=st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
47 orc s=x1𝑜s=x1𝑜¬t=xt
48 47 expcom x1𝑜s=s=x1𝑜¬t=xt
49 48 adantrd x1𝑜s=¬t=s=x1𝑜¬t=xt
50 49 adantl st=x1𝑜s=¬t=s=x1𝑜¬t=xt
51 simpr xss=s=
52 id s=s=
53 snsspr1 1𝑜
54 52 53 eqsstrdi s=s1𝑜
55 54 sseld s=xsx1𝑜
56 55 impcom xss=x1𝑜
57 51 56 jca xss=s=x1𝑜
58 57 orcd xss=s=x1𝑜¬t=xt
59 58 ex xss=s=x1𝑜¬t=xt
60 olc ¬t=xts=x1𝑜¬t=xt
61 60 expcom xt¬t=s=x1𝑜¬t=xt
62 59 61 jaoa xsxts=¬t=s=x1𝑜¬t=xt
63 29 62 sylbi xsts=¬t=s=x1𝑜¬t=xt
64 63 adantl ¬st=xsts=¬t=s=x1𝑜¬t=xt
65 50 64 jaoi st=x1𝑜¬st=xsts=¬t=s=x1𝑜¬t=xt
66 olc t=x1𝑜¬s=xst=x1𝑜
67 66 expcom x1𝑜t=¬s=xst=x1𝑜
68 67 adantl st=x1𝑜t=¬s=xst=x1𝑜
69 68 adantrd st=x1𝑜t=¬s=¬s=xst=x1𝑜
70 id ¬s=xs¬s=xs
71 70 ex ¬s=xs¬s=xs
72 71 adantl t=¬s=xs¬s=xs
73 id t=t=
74 73 53 eqsstrdi t=t1𝑜
75 74 sseld t=xtx1𝑜
76 75 anc2li t=xtt=x1𝑜
77 76 adantr t=¬s=xtt=x1𝑜
78 72 77 orim12d t=¬s=xsxt¬s=xst=x1𝑜
79 78 com12 xsxtt=¬s=¬s=xst=x1𝑜
80 29 79 sylbi xstt=¬s=¬s=xst=x1𝑜
81 80 adantl ¬st=xstt=¬s=¬s=xst=x1𝑜
82 69 81 jaoi st=x1𝑜¬st=xstt=¬s=¬s=xst=x1𝑜
83 65 82 orim12d st=x1𝑜¬st=xsts=¬t=t=¬s=s=x1𝑜¬t=xt¬s=xst=x1𝑜
84 83 com12 s=¬t=t=¬s=st=x1𝑜¬st=xsts=x1𝑜¬t=xt¬s=xst=x1𝑜
85 or42 s=x1𝑜¬t=xt¬s=xst=x1𝑜s=x1𝑜¬s=xst=x1𝑜¬t=xt
86 84 85 imbitrdi s=¬t=t=¬s=st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
87 86 a1i s𝒫3𝑜t𝒫3𝑜s=¬t=t=¬s=st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
88 4exmid s=t=¬s=¬t=s=¬t=t=¬s=
89 88 a1i s𝒫3𝑜t𝒫3𝑜s=t=¬s=¬t=s=¬t=t=¬s=
90 46 87 89 mpjaod s𝒫3𝑜t𝒫3𝑜st=x1𝑜¬st=xsts=x1𝑜¬s=xst=x1𝑜¬t=xt
91 2 90 biimtrid s𝒫3𝑜t𝒫3𝑜xifst=1𝑜sts=x1𝑜¬s=xst=x1𝑜¬t=xt
92 elun xifs=1𝑜sift=1𝑜txifs=1𝑜sxift=1𝑜t
93 elif xifs=1𝑜ss=x1𝑜¬s=xs
94 elif xift=1𝑜tt=x1𝑜¬t=xt
95 93 94 orbi12i xifs=1𝑜sxift=1𝑜ts=x1𝑜¬s=xst=x1𝑜¬t=xt
96 92 95 sylbbr s=x1𝑜¬s=xst=x1𝑜¬t=xtxifs=1𝑜sift=1𝑜t
97 91 96 syl6 s𝒫3𝑜t𝒫3𝑜xifst=1𝑜stxifs=1𝑜sift=1𝑜t
98 97 ssrdv s𝒫3𝑜t𝒫3𝑜ifst=1𝑜stifs=1𝑜sift=1𝑜t
99 pwuncl s𝒫3𝑜t𝒫3𝑜st𝒫3𝑜
100 eqeq1 r=str=st=
101 id r=str=st
102 100 101 ifbieq2d r=stifr=1𝑜r=ifst=1𝑜st
103 prex 1𝑜V
104 vex sV
105 vex tV
106 104 105 unex stV
107 103 106 ifex ifst=1𝑜stV
108 102 1 107 fvmpt st𝒫3𝑜Kst=ifst=1𝑜st
109 99 108 syl s𝒫3𝑜t𝒫3𝑜Kst=ifst=1𝑜st
110 eqeq1 r=sr=s=
111 id r=sr=s
112 110 111 ifbieq2d r=sifr=1𝑜r=ifs=1𝑜s
113 103 104 ifex ifs=1𝑜sV
114 112 1 113 fvmpt s𝒫3𝑜Ks=ifs=1𝑜s
115 114 adantr s𝒫3𝑜t𝒫3𝑜Ks=ifs=1𝑜s
116 eqeq1 r=tr=t=
117 id r=tr=t
118 116 117 ifbieq2d r=tifr=1𝑜r=ift=1𝑜t
119 103 105 ifex ift=1𝑜tV
120 118 1 119 fvmpt t𝒫3𝑜Kt=ift=1𝑜t
121 120 adantl s𝒫3𝑜t𝒫3𝑜Kt=ift=1𝑜t
122 115 121 uneq12d s𝒫3𝑜t𝒫3𝑜KsKt=ifs=1𝑜sift=1𝑜t
123 98 109 122 3sstr4d s𝒫3𝑜t𝒫3𝑜KstKsKt
124 123 rgen2 s𝒫3𝑜t𝒫3𝑜KstKsKt