Metamath Proof Explorer


Theorem clwlknon2num

Description: There are k walks of length 2 on each vertex X in a k-regular simple graph. Variant of clwwlknon2num , using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypothesis clwlknon2num.v V=VtxG
Assertion clwlknon2num VFinGRegUSGraphKXVwClWalksG|1stw=22ndw0=X=K

Proof

Step Hyp Ref Expression
1 clwlknon2num.v V=VtxG
2 rusgrusgr GRegUSGraphKGUSGraph
3 usgruspgr GUSGraphGUSHGraph
4 2 3 syl GRegUSGraphKGUSHGraph
5 4 3ad2ant2 VFinGRegUSGraphKXVGUSHGraph
6 1 eleq2i XVXVtxG
7 6 biimpi XVXVtxG
8 7 3ad2ant3 VFinGRegUSGraphKXVXVtxG
9 2nn 2
10 9 a1i VFinGRegUSGraphKXV2
11 clwwlknonclwlknonen GUSHGraphXVtxG2wClWalksG|1stw=22ndw0=XXClWWalksNOnG2
12 5 8 10 11 syl3anc VFinGRegUSGraphKXVwClWalksG|1stw=22ndw0=XXClWWalksNOnG2
13 2 anim2i VFinGRegUSGraphKVFinGUSGraph
14 13 ancomd VFinGRegUSGraphKGUSGraphVFin
15 1 isfusgr GFinUSGraphGUSGraphVFin
16 14 15 sylibr VFinGRegUSGraphKGFinUSGraph
17 16 3adant3 VFinGRegUSGraphKXVGFinUSGraph
18 2nn0 20
19 18 a1i VFinGRegUSGraphKXV20
20 wlksnfi GFinUSGraph20wWalksG|1stw=2Fin
21 17 19 20 syl2anc VFinGRegUSGraphKXVwWalksG|1stw=2Fin
22 clwlkswks ClWalksGWalksG
23 22 a1i VFinGRegUSGraphKXVClWalksGWalksG
24 simp2l VFinGRegUSGraphKXV1stw=22ndw0=XwClWalksG1stw=2
25 23 24 rabssrabd VFinGRegUSGraphKXVwClWalksG|1stw=22ndw0=XwWalksG|1stw=2
26 21 25 ssfid VFinGRegUSGraphKXVwClWalksG|1stw=22ndw0=XFin
27 1 clwwlknonfin VFinXClWWalksNOnG2Fin
28 27 3ad2ant1 VFinGRegUSGraphKXVXClWWalksNOnG2Fin
29 hashen wClWalksG|1stw=22ndw0=XFinXClWWalksNOnG2FinwClWalksG|1stw=22ndw0=X=XClWWalksNOnG2wClWalksG|1stw=22ndw0=XXClWWalksNOnG2
30 26 28 29 syl2anc VFinGRegUSGraphKXVwClWalksG|1stw=22ndw0=X=XClWWalksNOnG2wClWalksG|1stw=22ndw0=XXClWWalksNOnG2
31 12 30 mpbird VFinGRegUSGraphKXVwClWalksG|1stw=22ndw0=X=XClWWalksNOnG2
32 7 anim2i GRegUSGraphKXVGRegUSGraphKXVtxG
33 32 3adant1 VFinGRegUSGraphKXVGRegUSGraphKXVtxG
34 clwwlknon2num GRegUSGraphKXVtxGXClWWalksNOnG2=K
35 33 34 syl VFinGRegUSGraphKXVXClWWalksNOnG2=K
36 31 35 eqtrd VFinGRegUSGraphKXVwClWalksG|1stw=22ndw0=X=K