Metamath Proof Explorer


Theorem clwlknon2num

Description: There are k walks of length 2 on each vertex X in a k-regular simple graph. Variant of clwwlknon2num , using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypothesis clwlknon2num.v V = Vtx G
Assertion clwlknon2num V Fin G RegUSGraph K X V w ClWalks G | 1 st w = 2 2 nd w 0 = X = K

Proof

Step Hyp Ref Expression
1 clwlknon2num.v V = Vtx G
2 rusgrusgr G RegUSGraph K G USGraph
3 usgruspgr G USGraph G USHGraph
4 2 3 syl G RegUSGraph K G USHGraph
5 4 3ad2ant2 V Fin G RegUSGraph K X V G USHGraph
6 1 eleq2i X V X Vtx G
7 6 biimpi X V X Vtx G
8 7 3ad2ant3 V Fin G RegUSGraph K X V X Vtx G
9 2nn 2
10 9 a1i V Fin G RegUSGraph K X V 2
11 clwwlknonclwlknonen G USHGraph X Vtx G 2 w ClWalks G | 1 st w = 2 2 nd w 0 = X X ClWWalksNOn G 2
12 5 8 10 11 syl3anc V Fin G RegUSGraph K X V w ClWalks G | 1 st w = 2 2 nd w 0 = X X ClWWalksNOn G 2
13 2 anim2i V Fin G RegUSGraph K V Fin G USGraph
14 13 ancomd V Fin G RegUSGraph K G USGraph V Fin
15 1 isfusgr G FinUSGraph G USGraph V Fin
16 14 15 sylibr V Fin G RegUSGraph K G FinUSGraph
17 16 3adant3 V Fin G RegUSGraph K X V G FinUSGraph
18 2nn0 2 0
19 18 a1i V Fin G RegUSGraph K X V 2 0
20 wlksnfi G FinUSGraph 2 0 w Walks G | 1 st w = 2 Fin
21 17 19 20 syl2anc V Fin G RegUSGraph K X V w Walks G | 1 st w = 2 Fin
22 clwlkswks ClWalks G Walks G
23 22 a1i V Fin G RegUSGraph K X V ClWalks G Walks G
24 simp2l V Fin G RegUSGraph K X V 1 st w = 2 2 nd w 0 = X w ClWalks G 1 st w = 2
25 23 24 rabssrabd V Fin G RegUSGraph K X V w ClWalks G | 1 st w = 2 2 nd w 0 = X w Walks G | 1 st w = 2
26 21 25 ssfid V Fin G RegUSGraph K X V w ClWalks G | 1 st w = 2 2 nd w 0 = X Fin
27 1 clwwlknonfin V Fin X ClWWalksNOn G 2 Fin
28 27 3ad2ant1 V Fin G RegUSGraph K X V X ClWWalksNOn G 2 Fin
29 hashen w ClWalks G | 1 st w = 2 2 nd w 0 = X Fin X ClWWalksNOn G 2 Fin w ClWalks G | 1 st w = 2 2 nd w 0 = X = X ClWWalksNOn G 2 w ClWalks G | 1 st w = 2 2 nd w 0 = X X ClWWalksNOn G 2
30 26 28 29 syl2anc V Fin G RegUSGraph K X V w ClWalks G | 1 st w = 2 2 nd w 0 = X = X ClWWalksNOn G 2 w ClWalks G | 1 st w = 2 2 nd w 0 = X X ClWWalksNOn G 2
31 12 30 mpbird V Fin G RegUSGraph K X V w ClWalks G | 1 st w = 2 2 nd w 0 = X = X ClWWalksNOn G 2
32 7 anim2i G RegUSGraph K X V G RegUSGraph K X Vtx G
33 32 3adant1 V Fin G RegUSGraph K X V G RegUSGraph K X Vtx G
34 clwwlknon2num G RegUSGraph K X Vtx G X ClWWalksNOn G 2 = K
35 33 34 syl V Fin G RegUSGraph K X V X ClWWalksNOn G 2 = K
36 31 35 eqtrd V Fin G RegUSGraph K X V w ClWalks G | 1 st w = 2 2 nd w 0 = X = K