Description: There are k walks of length 2 on each vertex X in a k-regular simple graph. Variant of clwwlknon2num , using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwlknon2num.v | |
|
Assertion | clwlknon2num | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlknon2num.v | |
|
2 | rusgrusgr | |
|
3 | usgruspgr | |
|
4 | 2 3 | syl | |
5 | 4 | 3ad2ant2 | |
6 | 1 | eleq2i | |
7 | 6 | biimpi | |
8 | 7 | 3ad2ant3 | |
9 | 2nn | |
|
10 | 9 | a1i | |
11 | clwwlknonclwlknonen | |
|
12 | 5 8 10 11 | syl3anc | |
13 | 2 | anim2i | |
14 | 13 | ancomd | |
15 | 1 | isfusgr | |
16 | 14 15 | sylibr | |
17 | 16 | 3adant3 | |
18 | 2nn0 | |
|
19 | 18 | a1i | |
20 | wlksnfi | |
|
21 | 17 19 20 | syl2anc | |
22 | clwlkswks | |
|
23 | 22 | a1i | |
24 | simp2l | |
|
25 | 23 24 | rabssrabd | |
26 | 21 25 | ssfid | |
27 | 1 | clwwlknonfin | |
28 | 27 | 3ad2ant1 | |
29 | hashen | |
|
30 | 26 28 29 | syl2anc | |
31 | 12 30 | mpbird | |
32 | 7 | anim2i | |
33 | 32 | 3adant1 | |
34 | clwwlknon2num | |
|
35 | 33 34 | syl | |
36 | 31 35 | eqtrd | |