Metamath Proof Explorer


Theorem cmphaushmeo

Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypotheses cmphaushmeo.1 X=J
cmphaushmeo.2 Y=K
Assertion cmphaushmeo JCompKHausFJCnKFJHomeoKF:X1-1 ontoY

Proof

Step Hyp Ref Expression
1 cmphaushmeo.1 X=J
2 cmphaushmeo.2 Y=K
3 1 2 hmeof1o FJHomeoKF:X1-1 ontoY
4 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
5 f1of F-1:Y1-1 ontoXF-1:YX
6 4 5 syl F:X1-1 ontoYF-1:YX
7 6 a1i JCompKHausFJCnKF:X1-1 ontoYF-1:YX
8 f1orel F:X1-1 ontoYRelF
9 8 ad2antll JCompKHausFJCnKxClsdJF:X1-1 ontoYRelF
10 dfrel2 RelFF-1-1=F
11 9 10 sylib JCompKHausFJCnKxClsdJF:X1-1 ontoYF-1-1=F
12 11 imaeq1d JCompKHausFJCnKxClsdJF:X1-1 ontoYF-1-1x=Fx
13 simp2 JCompKHausFJCnKKHaus
14 13 adantr JCompKHausFJCnKxClsdJF:X1-1 ontoYKHaus
15 imassrn FxranF
16 f1ofo F:X1-1 ontoYF:XontoY
17 16 ad2antll JCompKHausFJCnKxClsdJF:X1-1 ontoYF:XontoY
18 forn F:XontoYranF=Y
19 17 18 syl JCompKHausFJCnKxClsdJF:X1-1 ontoYranF=Y
20 15 19 sseqtrid JCompKHausFJCnKxClsdJF:X1-1 ontoYFxY
21 simpl3 JCompKHausFJCnKxClsdJF:X1-1 ontoYFJCnK
22 simp1 JCompKHausFJCnKJComp
23 22 adantr JCompKHausFJCnKxClsdJF:X1-1 ontoYJComp
24 simprl JCompKHausFJCnKxClsdJF:X1-1 ontoYxClsdJ
25 cmpcld JCompxClsdJJ𝑡xComp
26 23 24 25 syl2anc JCompKHausFJCnKxClsdJF:X1-1 ontoYJ𝑡xComp
27 imacmp FJCnKJ𝑡xCompK𝑡FxComp
28 21 26 27 syl2anc JCompKHausFJCnKxClsdJF:X1-1 ontoYK𝑡FxComp
29 2 hauscmp KHausFxYK𝑡FxCompFxClsdK
30 14 20 28 29 syl3anc JCompKHausFJCnKxClsdJF:X1-1 ontoYFxClsdK
31 12 30 eqeltrd JCompKHausFJCnKxClsdJF:X1-1 ontoYF-1-1xClsdK
32 31 expr JCompKHausFJCnKxClsdJF:X1-1 ontoYF-1-1xClsdK
33 32 ralrimdva JCompKHausFJCnKF:X1-1 ontoYxClsdJF-1-1xClsdK
34 7 33 jcad JCompKHausFJCnKF:X1-1 ontoYF-1:YXxClsdJF-1-1xClsdK
35 haustop KHausKTop
36 13 35 syl JCompKHausFJCnKKTop
37 2 toptopon KTopKTopOnY
38 36 37 sylib JCompKHausFJCnKKTopOnY
39 cmptop JCompJTop
40 22 39 syl JCompKHausFJCnKJTop
41 1 toptopon JTopJTopOnX
42 40 41 sylib JCompKHausFJCnKJTopOnX
43 iscncl KTopOnYJTopOnXF-1KCnJF-1:YXxClsdJF-1-1xClsdK
44 38 42 43 syl2anc JCompKHausFJCnKF-1KCnJF-1:YXxClsdJF-1-1xClsdK
45 34 44 sylibrd JCompKHausFJCnKF:X1-1 ontoYF-1KCnJ
46 simp3 JCompKHausFJCnKFJCnK
47 45 46 jctild JCompKHausFJCnKF:X1-1 ontoYFJCnKF-1KCnJ
48 ishmeo FJHomeoKFJCnKF-1KCnJ
49 47 48 imbitrrdi JCompKHausFJCnKF:X1-1 ontoYFJHomeoK
50 3 49 impbid2 JCompKHausFJCnKFJHomeoKF:X1-1 ontoY