Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cmphaushmeo.1 | |
|
cmphaushmeo.2 | |
||
Assertion | cmphaushmeo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmphaushmeo.1 | |
|
2 | cmphaushmeo.2 | |
|
3 | 1 2 | hmeof1o | |
4 | f1ocnv | |
|
5 | f1of | |
|
6 | 4 5 | syl | |
7 | 6 | a1i | |
8 | f1orel | |
|
9 | 8 | ad2antll | |
10 | dfrel2 | |
|
11 | 9 10 | sylib | |
12 | 11 | imaeq1d | |
13 | simp2 | |
|
14 | 13 | adantr | |
15 | imassrn | |
|
16 | f1ofo | |
|
17 | 16 | ad2antll | |
18 | forn | |
|
19 | 17 18 | syl | |
20 | 15 19 | sseqtrid | |
21 | simpl3 | |
|
22 | simp1 | |
|
23 | 22 | adantr | |
24 | simprl | |
|
25 | cmpcld | |
|
26 | 23 24 25 | syl2anc | |
27 | imacmp | |
|
28 | 21 26 27 | syl2anc | |
29 | 2 | hauscmp | |
30 | 14 20 28 29 | syl3anc | |
31 | 12 30 | eqeltrd | |
32 | 31 | expr | |
33 | 32 | ralrimdva | |
34 | 7 33 | jcad | |
35 | haustop | |
|
36 | 13 35 | syl | |
37 | 2 | toptopon | |
38 | 36 37 | sylib | |
39 | cmptop | |
|
40 | 22 39 | syl | |
41 | 1 | toptopon | |
42 | 40 41 | sylib | |
43 | iscncl | |
|
44 | 38 42 43 | syl2anc | |
45 | 34 44 | sylibrd | |
46 | simp3 | |
|
47 | 45 46 | jctild | |
48 | ishmeo | |
|
49 | 47 48 | imbitrrdi | |
50 | 3 49 | impbid2 | |