| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmphaushmeo.1 |  | 
						
							| 2 |  | cmphaushmeo.2 |  | 
						
							| 3 | 1 2 | hmeof1o |  | 
						
							| 4 |  | f1ocnv |  | 
						
							| 5 |  | f1of |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | f1orel |  | 
						
							| 9 | 8 | ad2antll |  | 
						
							| 10 |  | dfrel2 |  | 
						
							| 11 | 9 10 | sylib |  | 
						
							| 12 | 11 | imaeq1d |  | 
						
							| 13 |  | simp2 |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | imassrn |  | 
						
							| 16 |  | f1ofo |  | 
						
							| 17 | 16 | ad2antll |  | 
						
							| 18 |  | forn |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 15 19 | sseqtrid |  | 
						
							| 21 |  | simpl3 |  | 
						
							| 22 |  | simp1 |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 |  | cmpcld |  | 
						
							| 26 | 23 24 25 | syl2anc |  | 
						
							| 27 |  | imacmp |  | 
						
							| 28 | 21 26 27 | syl2anc |  | 
						
							| 29 | 2 | hauscmp |  | 
						
							| 30 | 14 20 28 29 | syl3anc |  | 
						
							| 31 | 12 30 | eqeltrd |  | 
						
							| 32 | 31 | expr |  | 
						
							| 33 | 32 | ralrimdva |  | 
						
							| 34 | 7 33 | jcad |  | 
						
							| 35 |  | haustop |  | 
						
							| 36 | 13 35 | syl |  | 
						
							| 37 | 2 | toptopon |  | 
						
							| 38 | 36 37 | sylib |  | 
						
							| 39 |  | cmptop |  | 
						
							| 40 | 22 39 | syl |  | 
						
							| 41 | 1 | toptopon |  | 
						
							| 42 | 40 41 | sylib |  | 
						
							| 43 |  | iscncl |  | 
						
							| 44 | 38 42 43 | syl2anc |  | 
						
							| 45 | 34 44 | sylibrd |  | 
						
							| 46 |  | simp3 |  | 
						
							| 47 | 45 46 | jctild |  | 
						
							| 48 |  | ishmeo |  | 
						
							| 49 | 47 48 | imbitrrdi |  | 
						
							| 50 | 3 49 | impbid2 |  |