Metamath Proof Explorer


Theorem cncfmet

Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)

Ref Expression
Hypotheses cncfmet.1 C=absA×A
cncfmet.2 D=absB×B
cncfmet.3 J=MetOpenC
cncfmet.4 K=MetOpenD
Assertion cncfmet ABAcnB=JCnK

Proof

Step Hyp Ref Expression
1 cncfmet.1 C=absA×A
2 cncfmet.2 D=absB×B
3 cncfmet.3 J=MetOpenC
4 cncfmet.4 K=MetOpenD
5 simplll ABf:ABxAwAA
6 simprl ABf:ABxAwAxA
7 simprr ABf:ABxAwAwA
8 1 oveqi xCw=xabsA×Aw
9 ovres xAwAxabsA×Aw=xabsw
10 8 9 eqtrid xAwAxCw=xabsw
11 10 ad2ant2l AxAAwAxCw=xabsw
12 ssel2 AxAx
13 ssel2 AwAw
14 eqid abs=abs
15 14 cnmetdval xwxabsw=xw
16 12 13 15 syl2an AxAAwAxabsw=xw
17 11 16 eqtrd AxAAwAxCw=xw
18 5 6 5 7 17 syl22anc ABf:ABxAwAxCw=xw
19 18 breq1d ABf:ABxAwAxCw<zxw<z
20 ffvelcdm f:ABxAfxB
21 20 ad2ant2lr ABf:ABxAwAfxB
22 ffvelcdm f:ABwAfwB
23 22 ad2ant2l ABf:ABxAwAfwB
24 2 oveqi fxDfw=fxabsB×Bfw
25 ovres fxBfwBfxabsB×Bfw=fxabsfw
26 24 25 eqtrid fxBfwBfxDfw=fxabsfw
27 21 23 26 syl2anc ABf:ABxAwAfxDfw=fxabsfw
28 simpllr ABf:ABxAwAB
29 28 21 sseldd ABf:ABxAwAfx
30 28 23 sseldd ABf:ABxAwAfw
31 14 cnmetdval fxfwfxabsfw=fxfw
32 29 30 31 syl2anc ABf:ABxAwAfxabsfw=fxfw
33 27 32 eqtrd ABf:ABxAwAfxDfw=fxfw
34 33 breq1d ABf:ABxAwAfxDfw<yfxfw<y
35 19 34 imbi12d ABf:ABxAwAxCw<zfxDfw<yxw<zfxfw<y
36 35 anassrs ABf:ABxAwAxCw<zfxDfw<yxw<zfxfw<y
37 36 ralbidva ABf:ABxAwAxCw<zfxDfw<ywAxw<zfxfw<y
38 37 rexbidv ABf:ABxAz+wAxCw<zfxDfw<yz+wAxw<zfxfw<y
39 38 ralbidv ABf:ABxAy+z+wAxCw<zfxDfw<yy+z+wAxw<zfxfw<y
40 39 ralbidva ABf:ABxAy+z+wAxCw<zfxDfw<yxAy+z+wAxw<zfxfw<y
41 40 pm5.32da ABf:ABxAy+z+wAxCw<zfxDfw<yf:ABxAy+z+wAxw<zfxfw<y
42 cnxmet abs∞Met
43 xmetres2 abs∞MetAabsA×A∞MetA
44 42 43 mpan AabsA×A∞MetA
45 1 44 eqeltrid AC∞MetA
46 xmetres2 abs∞MetBabsB×B∞MetB
47 42 46 mpan BabsB×B∞MetB
48 2 47 eqeltrid BD∞MetB
49 3 4 metcn C∞MetAD∞MetBfJCnKf:ABxAy+z+wAxCw<zfxDfw<y
50 45 48 49 syl2an ABfJCnKf:ABxAy+z+wAxCw<zfxDfw<y
51 elcncf ABf:AcnBf:ABxAy+z+wAxw<zfxfw<y
52 41 50 51 3bitr4rd ABf:AcnBfJCnK
53 52 eqrdv ABAcnB=JCnK