Step |
Hyp |
Ref |
Expression |
1 |
|
cncfmet.1 |
|
2 |
|
cncfmet.2 |
|
3 |
|
cncfmet.3 |
|
4 |
|
cncfmet.4 |
|
5 |
|
simplll |
|
6 |
|
simprl |
|
7 |
|
simprr |
|
8 |
1
|
oveqi |
|
9 |
|
ovres |
|
10 |
8 9
|
eqtrid |
|
11 |
10
|
ad2ant2l |
|
12 |
|
ssel2 |
|
13 |
|
ssel2 |
|
14 |
|
eqid |
|
15 |
14
|
cnmetdval |
|
16 |
12 13 15
|
syl2an |
|
17 |
11 16
|
eqtrd |
|
18 |
5 6 5 7 17
|
syl22anc |
|
19 |
18
|
breq1d |
|
20 |
|
ffvelrn |
|
21 |
20
|
ad2ant2lr |
|
22 |
|
ffvelrn |
|
23 |
22
|
ad2ant2l |
|
24 |
2
|
oveqi |
|
25 |
|
ovres |
|
26 |
24 25
|
eqtrid |
|
27 |
21 23 26
|
syl2anc |
|
28 |
|
simpllr |
|
29 |
28 21
|
sseldd |
|
30 |
28 23
|
sseldd |
|
31 |
14
|
cnmetdval |
|
32 |
29 30 31
|
syl2anc |
|
33 |
27 32
|
eqtrd |
|
34 |
33
|
breq1d |
|
35 |
19 34
|
imbi12d |
|
36 |
35
|
anassrs |
|
37 |
36
|
ralbidva |
|
38 |
37
|
rexbidv |
|
39 |
38
|
ralbidv |
|
40 |
39
|
ralbidva |
|
41 |
40
|
pm5.32da |
|
42 |
|
cnxmet |
|
43 |
|
xmetres2 |
|
44 |
42 43
|
mpan |
|
45 |
1 44
|
eqeltrid |
|
46 |
|
xmetres2 |
|
47 |
42 46
|
mpan |
|
48 |
2 47
|
eqeltrid |
|
49 |
3 4
|
metcn |
|
50 |
45 48 49
|
syl2an |
|
51 |
|
elcncf |
|
52 |
41 50 51
|
3bitr4rd |
|
53 |
52
|
eqrdv |
|