Metamath Proof Explorer


Theorem cncfmet

Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)

Ref Expression
Hypotheses cncfmet.1 C = abs A × A
cncfmet.2 D = abs B × B
cncfmet.3 J = MetOpen C
cncfmet.4 K = MetOpen D
Assertion cncfmet A B A cn B = J Cn K

Proof

Step Hyp Ref Expression
1 cncfmet.1 C = abs A × A
2 cncfmet.2 D = abs B × B
3 cncfmet.3 J = MetOpen C
4 cncfmet.4 K = MetOpen D
5 simplll A B f : A B x A w A A
6 simprl A B f : A B x A w A x A
7 simprr A B f : A B x A w A w A
8 1 oveqi x C w = x abs A × A w
9 ovres x A w A x abs A × A w = x abs w
10 8 9 eqtrid x A w A x C w = x abs w
11 10 ad2ant2l A x A A w A x C w = x abs w
12 ssel2 A x A x
13 ssel2 A w A w
14 eqid abs = abs
15 14 cnmetdval x w x abs w = x w
16 12 13 15 syl2an A x A A w A x abs w = x w
17 11 16 eqtrd A x A A w A x C w = x w
18 5 6 5 7 17 syl22anc A B f : A B x A w A x C w = x w
19 18 breq1d A B f : A B x A w A x C w < z x w < z
20 ffvelrn f : A B x A f x B
21 20 ad2ant2lr A B f : A B x A w A f x B
22 ffvelrn f : A B w A f w B
23 22 ad2ant2l A B f : A B x A w A f w B
24 2 oveqi f x D f w = f x abs B × B f w
25 ovres f x B f w B f x abs B × B f w = f x abs f w
26 24 25 eqtrid f x B f w B f x D f w = f x abs f w
27 21 23 26 syl2anc A B f : A B x A w A f x D f w = f x abs f w
28 simpllr A B f : A B x A w A B
29 28 21 sseldd A B f : A B x A w A f x
30 28 23 sseldd A B f : A B x A w A f w
31 14 cnmetdval f x f w f x abs f w = f x f w
32 29 30 31 syl2anc A B f : A B x A w A f x abs f w = f x f w
33 27 32 eqtrd A B f : A B x A w A f x D f w = f x f w
34 33 breq1d A B f : A B x A w A f x D f w < y f x f w < y
35 19 34 imbi12d A B f : A B x A w A x C w < z f x D f w < y x w < z f x f w < y
36 35 anassrs A B f : A B x A w A x C w < z f x D f w < y x w < z f x f w < y
37 36 ralbidva A B f : A B x A w A x C w < z f x D f w < y w A x w < z f x f w < y
38 37 rexbidv A B f : A B x A z + w A x C w < z f x D f w < y z + w A x w < z f x f w < y
39 38 ralbidv A B f : A B x A y + z + w A x C w < z f x D f w < y y + z + w A x w < z f x f w < y
40 39 ralbidva A B f : A B x A y + z + w A x C w < z f x D f w < y x A y + z + w A x w < z f x f w < y
41 40 pm5.32da A B f : A B x A y + z + w A x C w < z f x D f w < y f : A B x A y + z + w A x w < z f x f w < y
42 cnxmet abs ∞Met
43 xmetres2 abs ∞Met A abs A × A ∞Met A
44 42 43 mpan A abs A × A ∞Met A
45 1 44 eqeltrid A C ∞Met A
46 xmetres2 abs ∞Met B abs B × B ∞Met B
47 42 46 mpan B abs B × B ∞Met B
48 2 47 eqeltrid B D ∞Met B
49 3 4 metcn C ∞Met A D ∞Met B f J Cn K f : A B x A y + z + w A x C w < z f x D f w < y
50 45 48 49 syl2an A B f J Cn K f : A B x A y + z + w A x C w < z f x D f w < y
51 elcncf A B f : A cn B f : A B x A y + z + w A x w < z f x f w < y
52 41 50 51 3bitr4rd A B f : A cn B f J Cn K
53 52 eqrdv A B A cn B = J Cn K