Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cncfmet.1 | |
|
cncfmet.2 | |
||
cncfmet.3 | |
||
cncfmet.4 | |
||
Assertion | cncfmet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmet.1 | |
|
2 | cncfmet.2 | |
|
3 | cncfmet.3 | |
|
4 | cncfmet.4 | |
|
5 | simplll | |
|
6 | simprl | |
|
7 | simprr | |
|
8 | 1 | oveqi | |
9 | ovres | |
|
10 | 8 9 | eqtrid | |
11 | 10 | ad2ant2l | |
12 | ssel2 | |
|
13 | ssel2 | |
|
14 | eqid | |
|
15 | 14 | cnmetdval | |
16 | 12 13 15 | syl2an | |
17 | 11 16 | eqtrd | |
18 | 5 6 5 7 17 | syl22anc | |
19 | 18 | breq1d | |
20 | ffvelcdm | |
|
21 | 20 | ad2ant2lr | |
22 | ffvelcdm | |
|
23 | 22 | ad2ant2l | |
24 | 2 | oveqi | |
25 | ovres | |
|
26 | 24 25 | eqtrid | |
27 | 21 23 26 | syl2anc | |
28 | simpllr | |
|
29 | 28 21 | sseldd | |
30 | 28 23 | sseldd | |
31 | 14 | cnmetdval | |
32 | 29 30 31 | syl2anc | |
33 | 27 32 | eqtrd | |
34 | 33 | breq1d | |
35 | 19 34 | imbi12d | |
36 | 35 | anassrs | |
37 | 36 | ralbidva | |
38 | 37 | rexbidv | |
39 | 38 | ralbidv | |
40 | 39 | ralbidva | |
41 | 40 | pm5.32da | |
42 | cnxmet | |
|
43 | xmetres2 | |
|
44 | 42 43 | mpan | |
45 | 1 44 | eqeltrid | |
46 | xmetres2 | |
|
47 | 42 46 | mpan | |
48 | 2 47 | eqeltrid | |
49 | 3 4 | metcn | |
50 | 45 48 49 | syl2an | |
51 | elcncf | |
|
52 | 41 50 51 | 3bitr4rd | |
53 | 52 | eqrdv | |