Metamath Proof Explorer


Theorem cnfcom3clem

Description: Lemma for cnfcom3c . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 4-Jul-2019)

Ref Expression
Hypotheses cnfcom3c.s S=domωCNFA
cnfcom3c.f F=ωCNFA-1b
cnfcom3c.g G=OrdIsoEFsupp
cnfcom3c.h H=seqωkV,zVM+𝑜z
cnfcom3c.t T=seqωkV,fVK
cnfcom3c.m M=ω𝑜Gk𝑜FGk
cnfcom3c.k K=xMdomf+𝑜xxdomfM+𝑜x-1
cnfcom3c.w W=GdomG
cnfcom3c.x X=uFW,vω𝑜WFW𝑜v+𝑜u
cnfcom3c.y Y=uFW,vω𝑜Wω𝑜W𝑜u+𝑜v
cnfcom3c.n N=XY-1TdomG
cnfcom3c.l L=bω𝑜AN
Assertion cnfcom3clem AOngbAωbwOn1𝑜gb:b1-1 ontoω𝑜w

Proof

Step Hyp Ref Expression
1 cnfcom3c.s S=domωCNFA
2 cnfcom3c.f F=ωCNFA-1b
3 cnfcom3c.g G=OrdIsoEFsupp
4 cnfcom3c.h H=seqωkV,zVM+𝑜z
5 cnfcom3c.t T=seqωkV,fVK
6 cnfcom3c.m M=ω𝑜Gk𝑜FGk
7 cnfcom3c.k K=xMdomf+𝑜xxdomfM+𝑜x-1
8 cnfcom3c.w W=GdomG
9 cnfcom3c.x X=uFW,vω𝑜WFW𝑜v+𝑜u
10 cnfcom3c.y Y=uFW,vω𝑜Wω𝑜W𝑜u+𝑜v
11 cnfcom3c.n N=XY-1TdomG
12 cnfcom3c.l L=bω𝑜AN
13 simp1 AOnbAωbAOn
14 omelon ωOn
15 1onn 1𝑜ω
16 ondif2 ωOn2𝑜ωOn1𝑜ω
17 14 15 16 mpbir2an ωOn2𝑜
18 oeworde ωOn2𝑜AOnAω𝑜A
19 17 13 18 sylancr AOnbAωbAω𝑜A
20 simp2 AOnbAωbbA
21 19 20 sseldd AOnbAωbbω𝑜A
22 simp3 AOnbAωbωb
23 1 13 21 2 3 4 5 6 7 8 22 cnfcom3lem AOnbAωbWOn1𝑜
24 1 13 21 2 3 4 5 6 7 8 22 9 10 11 cnfcom3 AOnbAωbN:b1-1 ontoω𝑜W
25 f1of N:b1-1 ontoω𝑜WN:bω𝑜W
26 24 25 syl AOnbAωbN:bω𝑜W
27 26 20 fexd AOnbAωbNV
28 12 fvmpt2 bω𝑜ANVLb=N
29 21 27 28 syl2anc AOnbAωbLb=N
30 29 f1oeq1d AOnbAωbLb:b1-1 ontoω𝑜WN:b1-1 ontoω𝑜W
31 24 30 mpbird AOnbAωbLb:b1-1 ontoω𝑜W
32 oveq2 w=Wω𝑜w=ω𝑜W
33 32 f1oeq3d w=WLb:b1-1 ontoω𝑜wLb:b1-1 ontoω𝑜W
34 33 rspcev WOn1𝑜Lb:b1-1 ontoω𝑜WwOn1𝑜Lb:b1-1 ontoω𝑜w
35 23 31 34 syl2anc AOnbAωbwOn1𝑜Lb:b1-1 ontoω𝑜w
36 35 3expia AOnbAωbwOn1𝑜Lb:b1-1 ontoω𝑜w
37 36 ralrimiva AOnbAωbwOn1𝑜Lb:b1-1 ontoω𝑜w
38 ovex ω𝑜AV
39 38 mptex bω𝑜ANV
40 12 39 eqeltri LV
41 nfmpt1 _bbω𝑜AN
42 12 41 nfcxfr _bL
43 42 nfeq2 bg=L
44 fveq1 g=Lgb=Lb
45 44 f1oeq1d g=Lgb:b1-1 ontoω𝑜wLb:b1-1 ontoω𝑜w
46 45 rexbidv g=LwOn1𝑜gb:b1-1 ontoω𝑜wwOn1𝑜Lb:b1-1 ontoω𝑜w
47 46 imbi2d g=LωbwOn1𝑜gb:b1-1 ontoω𝑜wωbwOn1𝑜Lb:b1-1 ontoω𝑜w
48 43 47 ralbid g=LbAωbwOn1𝑜gb:b1-1 ontoω𝑜wbAωbwOn1𝑜Lb:b1-1 ontoω𝑜w
49 40 48 spcev bAωbwOn1𝑜Lb:b1-1 ontoω𝑜wgbAωbwOn1𝑜gb:b1-1 ontoω𝑜w
50 37 49 syl AOngbAωbwOn1𝑜gb:b1-1 ontoω𝑜w