Metamath Proof Explorer


Theorem cnlnssadj

Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion cnlnssadj LinOpContOpdomadjh

Proof

Step Hyp Ref Expression
1 cnlnadj yLinOpContOptLinOpContOpxzyxihz=xihtz
2 df-rex tLinOpContOpxzyxihz=xihtzttLinOpContOpxzyxihz=xihtz
3 1 2 sylib yLinOpContOpttLinOpContOpxzyxihz=xihtz
4 inss1 LinOpContOpLinOp
5 4 sseli yLinOpContOpyLinOp
6 lnopf yLinOpy:
7 5 6 syl yLinOpContOpy:
8 7 a1d yLinOpContOptLinOpContOpxzyxihz=xihtzy:
9 4 sseli tLinOpContOptLinOp
10 lnopf tLinOpt:
11 9 10 syl tLinOpContOpt:
12 11 a1i yLinOpContOptLinOpContOpt:
13 12 adantrd yLinOpContOptLinOpContOpxzyxihz=xihtzt:
14 eqcom yxihz=xihtzxihtz=yxihz
15 14 biimpi yxihz=xihtzxihtz=yxihz
16 15 2ralimi xzyxihz=xihtzxzxihtz=yxihz
17 adjsym t:y:xzxihtz=yxihzxzxihyz=txihz
18 11 7 17 syl2anr yLinOpContOptLinOpContOpxzxihtz=yxihzxzxihyz=txihz
19 16 18 imbitrid yLinOpContOptLinOpContOpxzyxihz=xihtzxzxihyz=txihz
20 19 expimpd yLinOpContOptLinOpContOpxzyxihz=xihtzxzxihyz=txihz
21 8 13 20 3jcad yLinOpContOptLinOpContOpxzyxihz=xihtzy:t:xzxihyz=txihz
22 dfadj2 adjh=uv|u:v:xzxihuz=vxihz
23 22 eleq2i ytadjhytuv|u:v:xzxihuz=vxihz
24 vex yV
25 vex tV
26 feq1 u=yu:y:
27 fveq1 u=yuz=yz
28 27 oveq2d u=yxihuz=xihyz
29 28 eqeq1d u=yxihuz=vxihzxihyz=vxihz
30 29 2ralbidv u=yxzxihuz=vxihzxzxihyz=vxihz
31 26 30 3anbi13d u=yu:v:xzxihuz=vxihzy:v:xzxihyz=vxihz
32 feq1 v=tv:t:
33 fveq1 v=tvx=tx
34 33 oveq1d v=tvxihz=txihz
35 34 eqeq2d v=txihyz=vxihzxihyz=txihz
36 35 2ralbidv v=txzxihyz=vxihzxzxihyz=txihz
37 32 36 3anbi23d v=ty:v:xzxihyz=vxihzy:t:xzxihyz=txihz
38 24 25 31 37 opelopab ytuv|u:v:xzxihuz=vxihzy:t:xzxihyz=txihz
39 23 38 bitr2i y:t:xzxihyz=txihzytadjh
40 21 39 imbitrdi yLinOpContOptLinOpContOpxzyxihz=xihtzytadjh
41 40 eximdv yLinOpContOpttLinOpContOpxzyxihz=xihtztytadjh
42 3 41 mpd yLinOpContOptytadjh
43 24 eldm2 ydomadjhtytadjh
44 42 43 sylibr yLinOpContOpydomadjh
45 44 ssriv LinOpContOpdomadjh