Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | cnlnssadj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlnadj | |
|
2 | df-rex | |
|
3 | 1 2 | sylib | |
4 | inss1 | |
|
5 | 4 | sseli | |
6 | lnopf | |
|
7 | 5 6 | syl | |
8 | 7 | a1d | |
9 | 4 | sseli | |
10 | lnopf | |
|
11 | 9 10 | syl | |
12 | 11 | a1i | |
13 | 12 | adantrd | |
14 | eqcom | |
|
15 | 14 | biimpi | |
16 | 15 | 2ralimi | |
17 | adjsym | |
|
18 | 11 7 17 | syl2anr | |
19 | 16 18 | imbitrid | |
20 | 19 | expimpd | |
21 | 8 13 20 | 3jcad | |
22 | dfadj2 | |
|
23 | 22 | eleq2i | |
24 | vex | |
|
25 | vex | |
|
26 | feq1 | |
|
27 | fveq1 | |
|
28 | 27 | oveq2d | |
29 | 28 | eqeq1d | |
30 | 29 | 2ralbidv | |
31 | 26 30 | 3anbi13d | |
32 | feq1 | |
|
33 | fveq1 | |
|
34 | 33 | oveq1d | |
35 | 34 | eqeq2d | |
36 | 35 | 2ralbidv | |
37 | 32 36 | 3anbi23d | |
38 | 24 25 31 37 | opelopab | |
39 | 23 38 | bitr2i | |
40 | 21 39 | imbitrdi | |
41 | 40 | eximdv | |
42 | 3 41 | mpd | |
43 | 24 | eldm2 | |
44 | 42 43 | sylibr | |
45 | 44 | ssriv | |