Metamath Proof Explorer


Theorem cnmpt1ip

Description: Continuity of inner product; analogue of cnmpt12f which cannot be used directly because .i is not a function. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cnmpt1ip.j J=TopOpenW
cnmpt1ip.c C=TopOpenfld
cnmpt1ip.h ,˙=𝑖W
cnmpt1ip.r φWCPreHil
cnmpt1ip.k φKTopOnX
cnmpt1ip.a φxXAKCnJ
cnmpt1ip.b φxXBKCnJ
Assertion cnmpt1ip φxXA,˙BKCnC

Proof

Step Hyp Ref Expression
1 cnmpt1ip.j J=TopOpenW
2 cnmpt1ip.c C=TopOpenfld
3 cnmpt1ip.h ,˙=𝑖W
4 cnmpt1ip.r φWCPreHil
5 cnmpt1ip.k φKTopOnX
6 cnmpt1ip.a φxXAKCnJ
7 cnmpt1ip.b φxXBKCnJ
8 cphngp WCPreHilWNrmGrp
9 ngptps WNrmGrpWTopSp
10 4 8 9 3syl φWTopSp
11 eqid BaseW=BaseW
12 11 1 istps WTopSpJTopOnBaseW
13 10 12 sylib φJTopOnBaseW
14 cnf2 KTopOnXJTopOnBaseWxXAKCnJxXA:XBaseW
15 5 13 6 14 syl3anc φxXA:XBaseW
16 15 fvmptelcdm φxXABaseW
17 cnf2 KTopOnXJTopOnBaseWxXBKCnJxXB:XBaseW
18 5 13 7 17 syl3anc φxXB:XBaseW
19 18 fvmptelcdm φxXBBaseW
20 eqid ifW=ifW
21 11 3 20 ipfval ABaseWBBaseWAifWB=A,˙B
22 16 19 21 syl2anc φxXAifWB=A,˙B
23 22 mpteq2dva φxXAifWB=xXA,˙B
24 20 1 2 ipcn WCPreHilifWJ×tJCnC
25 4 24 syl φifWJ×tJCnC
26 5 6 7 25 cnmpt12f φxXAifWBKCnC
27 23 26 eqeltrrd φxXA,˙BKCnC