Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnmptid.j | |
|
cnmpt11.a | |
||
cnmpt1t.b | |
||
Assertion | cnmpt1t | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptid.j | |
|
2 | cnmpt11.a | |
|
3 | cnmpt1t.b | |
|
4 | toponuni | |
|
5 | mpteq1 | |
|
6 | 1 4 5 | 3syl | |
7 | simpr | |
|
8 | cntop2 | |
|
9 | 2 8 | syl | |
10 | toptopon2 | |
|
11 | 9 10 | sylib | |
12 | cnf2 | |
|
13 | 1 11 2 12 | syl3anc | |
14 | 13 | fvmptelcdm | |
15 | eqid | |
|
16 | 15 | fvmpt2 | |
17 | 7 14 16 | syl2anc | |
18 | cntop2 | |
|
19 | 3 18 | syl | |
20 | toptopon2 | |
|
21 | 19 20 | sylib | |
22 | cnf2 | |
|
23 | 1 21 3 22 | syl3anc | |
24 | 23 | fvmptelcdm | |
25 | eqid | |
|
26 | 25 | fvmpt2 | |
27 | 7 24 26 | syl2anc | |
28 | 17 27 | opeq12d | |
29 | 28 | mpteq2dva | |
30 | 6 29 | eqtr3d | |
31 | eqid | |
|
32 | nfcv | |
|
33 | nffvmpt1 | |
|
34 | nffvmpt1 | |
|
35 | 33 34 | nfop | |
36 | fveq2 | |
|
37 | fveq2 | |
|
38 | 36 37 | opeq12d | |
39 | 32 35 38 | cbvmpt | |
40 | 31 39 | txcnmpt | |
41 | 2 3 40 | syl2anc | |
42 | 30 41 | eqeltrrd | |