Metamath Proof Explorer


Theorem cnmpt1t

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j φJTopOnX
cnmpt11.a φxXAJCnK
cnmpt1t.b φxXBJCnL
Assertion cnmpt1t φxXABJCnK×tL

Proof

Step Hyp Ref Expression
1 cnmptid.j φJTopOnX
2 cnmpt11.a φxXAJCnK
3 cnmpt1t.b φxXBJCnL
4 toponuni JTopOnXX=J
5 mpteq1 X=JxXxXAxxXBx=xJxXAxxXBx
6 1 4 5 3syl φxXxXAxxXBx=xJxXAxxXBx
7 simpr φxXxX
8 cntop2 xXAJCnKKTop
9 2 8 syl φKTop
10 toptopon2 KTopKTopOnK
11 9 10 sylib φKTopOnK
12 cnf2 JTopOnXKTopOnKxXAJCnKxXA:XK
13 1 11 2 12 syl3anc φxXA:XK
14 13 fvmptelcdm φxXAK
15 eqid xXA=xXA
16 15 fvmpt2 xXAKxXAx=A
17 7 14 16 syl2anc φxXxXAx=A
18 cntop2 xXBJCnLLTop
19 3 18 syl φLTop
20 toptopon2 LTopLTopOnL
21 19 20 sylib φLTopOnL
22 cnf2 JTopOnXLTopOnLxXBJCnLxXB:XL
23 1 21 3 22 syl3anc φxXB:XL
24 23 fvmptelcdm φxXBL
25 eqid xXB=xXB
26 25 fvmpt2 xXBLxXBx=B
27 7 24 26 syl2anc φxXxXBx=B
28 17 27 opeq12d φxXxXAxxXBx=AB
29 28 mpteq2dva φxXxXAxxXBx=xXAB
30 6 29 eqtr3d φxJxXAxxXBx=xXAB
31 eqid J=J
32 nfcv _yxXAxxXBx
33 nffvmpt1 _xxXAy
34 nffvmpt1 _xxXBy
35 33 34 nfop _xxXAyxXBy
36 fveq2 x=yxXAx=xXAy
37 fveq2 x=yxXBx=xXBy
38 36 37 opeq12d x=yxXAxxXBx=xXAyxXBy
39 32 35 38 cbvmpt xJxXAxxXBx=yJxXAyxXBy
40 31 39 txcnmpt xXAJCnKxXBJCnLxJxXAxxXBxJCnK×tL
41 2 3 40 syl2anc φxJxXAxxXBxJCnK×tL
42 30 41 eqeltrrd φxXABJCnK×tL