| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmptid.j |  | 
						
							| 2 |  | cnmpt11.a |  | 
						
							| 3 |  | cnmpt1t.b |  | 
						
							| 4 |  | toponuni |  | 
						
							| 5 |  | mpteq1 |  | 
						
							| 6 | 1 4 5 | 3syl |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 |  | cntop2 |  | 
						
							| 9 | 2 8 | syl |  | 
						
							| 10 |  | toptopon2 |  | 
						
							| 11 | 9 10 | sylib |  | 
						
							| 12 |  | cnf2 |  | 
						
							| 13 | 1 11 2 12 | syl3anc |  | 
						
							| 14 | 13 | fvmptelcdm |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | fvmpt2 |  | 
						
							| 17 | 7 14 16 | syl2anc |  | 
						
							| 18 |  | cntop2 |  | 
						
							| 19 | 3 18 | syl |  | 
						
							| 20 |  | toptopon2 |  | 
						
							| 21 | 19 20 | sylib |  | 
						
							| 22 |  | cnf2 |  | 
						
							| 23 | 1 21 3 22 | syl3anc |  | 
						
							| 24 | 23 | fvmptelcdm |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 25 | fvmpt2 |  | 
						
							| 27 | 7 24 26 | syl2anc |  | 
						
							| 28 | 17 27 | opeq12d |  | 
						
							| 29 | 28 | mpteq2dva |  | 
						
							| 30 | 6 29 | eqtr3d |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 |  | nfcv |  | 
						
							| 33 |  | nffvmpt1 |  | 
						
							| 34 |  | nffvmpt1 |  | 
						
							| 35 | 33 34 | nfop |  | 
						
							| 36 |  | fveq2 |  | 
						
							| 37 |  | fveq2 |  | 
						
							| 38 | 36 37 | opeq12d |  | 
						
							| 39 | 32 35 38 | cbvmpt |  | 
						
							| 40 | 31 39 | txcnmpt |  | 
						
							| 41 | 2 3 40 | syl2anc |  | 
						
							| 42 | 30 41 | eqeltrrd |  |