Metamath Proof Explorer


Theorem cnpresti

Description: One direction of cnprest under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Hypothesis cnprest.1 X = J
Assertion cnpresti A X P A F J CnP K P F A J 𝑡 A CnP K P

Proof

Step Hyp Ref Expression
1 cnprest.1 X = J
2 eqid K = K
3 1 2 cnpf F J CnP K P F : X K
4 3 3ad2ant3 A X P A F J CnP K P F : X K
5 simp1 A X P A F J CnP K P A X
6 4 5 fssresd A X P A F J CnP K P F A : A K
7 simpl2 A X P A F J CnP K P y K P A
8 7 fvresd A X P A F J CnP K P y K F A P = F P
9 8 eleq1d A X P A F J CnP K P y K F A P y F P y
10 cnpimaex F J CnP K P y K F P y x J P x F x y
11 10 3expia F J CnP K P y K F P y x J P x F x y
12 11 3ad2antl3 A X P A F J CnP K P y K F P y x J P x F x y
13 idd A X P A F J CnP K P P x P x
14 simp2 A X P A F J CnP K P P A
15 13 14 jctird A X P A F J CnP K P P x P x P A
16 elin P x A P x P A
17 15 16 syl6ibr A X P A F J CnP K P P x P x A
18 inss1 x A x
19 imass2 x A x F x A F x
20 18 19 ax-mp F x A F x
21 id F x y F x y
22 20 21 sstrid F x y F x A y
23 17 22 anim12d1 A X P A F J CnP K P P x F x y P x A F x A y
24 23 reximdv A X P A F J CnP K P x J P x F x y x J P x A F x A y
25 vex x V
26 25 inex1 x A V
27 26 a1i A X P A F J CnP K P x J x A V
28 cnptop1 F J CnP K P J Top
29 28 3ad2ant3 A X P A F J CnP K P J Top
30 29 uniexd A X P A F J CnP K P J V
31 5 1 sseqtrdi A X P A F J CnP K P A J
32 30 31 ssexd A X P A F J CnP K P A V
33 elrest J Top A V z J 𝑡 A x J z = x A
34 29 32 33 syl2anc A X P A F J CnP K P z J 𝑡 A x J z = x A
35 simpr A X P A F J CnP K P z = x A z = x A
36 35 eleq2d A X P A F J CnP K P z = x A P z P x A
37 35 imaeq2d A X P A F J CnP K P z = x A F A z = F A x A
38 inss2 x A A
39 resima2 x A A F A x A = F x A
40 38 39 ax-mp F A x A = F x A
41 37 40 eqtrdi A X P A F J CnP K P z = x A F A z = F x A
42 41 sseq1d A X P A F J CnP K P z = x A F A z y F x A y
43 36 42 anbi12d A X P A F J CnP K P z = x A P z F A z y P x A F x A y
44 27 34 43 rexxfr2d A X P A F J CnP K P z J 𝑡 A P z F A z y x J P x A F x A y
45 24 44 sylibrd A X P A F J CnP K P x J P x F x y z J 𝑡 A P z F A z y
46 45 adantr A X P A F J CnP K P y K x J P x F x y z J 𝑡 A P z F A z y
47 12 46 syld A X P A F J CnP K P y K F P y z J 𝑡 A P z F A z y
48 9 47 sylbid A X P A F J CnP K P y K F A P y z J 𝑡 A P z F A z y
49 48 ralrimiva A X P A F J CnP K P y K F A P y z J 𝑡 A P z F A z y
50 1 toptopon J Top J TopOn X
51 29 50 sylib A X P A F J CnP K P J TopOn X
52 resttopon J TopOn X A X J 𝑡 A TopOn A
53 51 5 52 syl2anc A X P A F J CnP K P J 𝑡 A TopOn A
54 cnptop2 F J CnP K P K Top
55 54 3ad2ant3 A X P A F J CnP K P K Top
56 2 toptopon K Top K TopOn K
57 55 56 sylib A X P A F J CnP K P K TopOn K
58 iscnp J 𝑡 A TopOn A K TopOn K P A F A J 𝑡 A CnP K P F A : A K y K F A P y z J 𝑡 A P z F A z y
59 53 57 14 58 syl3anc A X P A F J CnP K P F A J 𝑡 A CnP K P F A : A K y K F A P y z J 𝑡 A P z F A z y
60 6 49 59 mpbir2and A X P A F J CnP K P F A J 𝑡 A CnP K P