Metamath Proof Explorer


Theorem cnpresti

Description: One direction of cnprest under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Hypothesis cnprest.1 X=J
Assertion cnpresti AXPAFJCnPKPFAJ𝑡ACnPKP

Proof

Step Hyp Ref Expression
1 cnprest.1 X=J
2 eqid K=K
3 1 2 cnpf FJCnPKPF:XK
4 3 3ad2ant3 AXPAFJCnPKPF:XK
5 simp1 AXPAFJCnPKPAX
6 4 5 fssresd AXPAFJCnPKPFA:AK
7 simpl2 AXPAFJCnPKPyKPA
8 7 fvresd AXPAFJCnPKPyKFAP=FP
9 8 eleq1d AXPAFJCnPKPyKFAPyFPy
10 cnpimaex FJCnPKPyKFPyxJPxFxy
11 10 3expia FJCnPKPyKFPyxJPxFxy
12 11 3ad2antl3 AXPAFJCnPKPyKFPyxJPxFxy
13 idd AXPAFJCnPKPPxPx
14 simp2 AXPAFJCnPKPPA
15 13 14 jctird AXPAFJCnPKPPxPxPA
16 elin PxAPxPA
17 15 16 syl6ibr AXPAFJCnPKPPxPxA
18 inss1 xAx
19 imass2 xAxFxAFx
20 18 19 ax-mp FxAFx
21 id FxyFxy
22 20 21 sstrid FxyFxAy
23 17 22 anim12d1 AXPAFJCnPKPPxFxyPxAFxAy
24 23 reximdv AXPAFJCnPKPxJPxFxyxJPxAFxAy
25 vex xV
26 25 inex1 xAV
27 26 a1i AXPAFJCnPKPxJxAV
28 cnptop1 FJCnPKPJTop
29 28 3ad2ant3 AXPAFJCnPKPJTop
30 29 uniexd AXPAFJCnPKPJV
31 5 1 sseqtrdi AXPAFJCnPKPAJ
32 30 31 ssexd AXPAFJCnPKPAV
33 elrest JTopAVzJ𝑡AxJz=xA
34 29 32 33 syl2anc AXPAFJCnPKPzJ𝑡AxJz=xA
35 simpr AXPAFJCnPKPz=xAz=xA
36 35 eleq2d AXPAFJCnPKPz=xAPzPxA
37 35 imaeq2d AXPAFJCnPKPz=xAFAz=FAxA
38 inss2 xAA
39 resima2 xAAFAxA=FxA
40 38 39 ax-mp FAxA=FxA
41 37 40 eqtrdi AXPAFJCnPKPz=xAFAz=FxA
42 41 sseq1d AXPAFJCnPKPz=xAFAzyFxAy
43 36 42 anbi12d AXPAFJCnPKPz=xAPzFAzyPxAFxAy
44 27 34 43 rexxfr2d AXPAFJCnPKPzJ𝑡APzFAzyxJPxAFxAy
45 24 44 sylibrd AXPAFJCnPKPxJPxFxyzJ𝑡APzFAzy
46 45 adantr AXPAFJCnPKPyKxJPxFxyzJ𝑡APzFAzy
47 12 46 syld AXPAFJCnPKPyKFPyzJ𝑡APzFAzy
48 9 47 sylbid AXPAFJCnPKPyKFAPyzJ𝑡APzFAzy
49 48 ralrimiva AXPAFJCnPKPyKFAPyzJ𝑡APzFAzy
50 1 toptopon JTopJTopOnX
51 29 50 sylib AXPAFJCnPKPJTopOnX
52 resttopon JTopOnXAXJ𝑡ATopOnA
53 51 5 52 syl2anc AXPAFJCnPKPJ𝑡ATopOnA
54 cnptop2 FJCnPKPKTop
55 54 3ad2ant3 AXPAFJCnPKPKTop
56 2 toptopon KTopKTopOnK
57 55 56 sylib AXPAFJCnPKPKTopOnK
58 iscnp J𝑡ATopOnAKTopOnKPAFAJ𝑡ACnPKPFA:AKyKFAPyzJ𝑡APzFAzy
59 53 57 14 58 syl3anc AXPAFJCnPKPFAJ𝑡ACnPKPFA:AKyKFAPyzJ𝑡APzFAzy
60 6 49 59 mpbir2and AXPAFJCnPKPFAJ𝑡ACnPKP