Metamath Proof Explorer


Theorem cnref1o

Description: There is a natural one-to-one mapping from ( RR X. RR ) to CC , where we map <. x , y >. to ( x + (i x. y ) ) . In our construction of the complex numbers, this is in fact our definition_ of CC (see df-c ), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Hypothesis cnref1o.1 F=x,yx+iy
Assertion cnref1o F:21-1 onto

Proof

Step Hyp Ref Expression
1 cnref1o.1 F=x,yx+iy
2 ovex x+iyV
3 1 2 fnmpoi FFn2
4 1st2nd2 z2z=1stz2ndz
5 4 fveq2d z2Fz=F1stz2ndz
6 df-ov 1stzF2ndz=F1stz2ndz
7 5 6 eqtr4di z2Fz=1stzF2ndz
8 xp1st z21stz
9 xp2nd z22ndz
10 oveq1 x=1stzx+iy=1stz+iy
11 oveq2 y=2ndziy=i2ndz
12 11 oveq2d y=2ndz1stz+iy=1stz+i2ndz
13 ovex 1stz+i2ndzV
14 10 12 1 13 ovmpo 1stz2ndz1stzF2ndz=1stz+i2ndz
15 8 9 14 syl2anc z21stzF2ndz=1stz+i2ndz
16 7 15 eqtrd z2Fz=1stz+i2ndz
17 8 recnd z21stz
18 ax-icn i
19 9 recnd z22ndz
20 mulcl i2ndzi2ndz
21 18 19 20 sylancr z2i2ndz
22 17 21 addcld z21stz+i2ndz
23 16 22 eqeltrd z2Fz
24 23 rgen z2Fz
25 ffnfv F:2FFn2z2Fz
26 3 24 25 mpbir2an F:2
27 8 9 jca z21stz2ndz
28 xp1st w21stw
29 xp2nd w22ndw
30 28 29 jca w21stw2ndw
31 cru 1stz2ndz1stw2ndw1stz+i2ndz=1stw+i2ndw1stz=1stw2ndz=2ndw
32 27 30 31 syl2an z2w21stz+i2ndz=1stw+i2ndw1stz=1stw2ndz=2ndw
33 fveq2 z=wFz=Fw
34 fveq2 z=w1stz=1stw
35 fveq2 z=w2ndz=2ndw
36 35 oveq2d z=wi2ndz=i2ndw
37 34 36 oveq12d z=w1stz+i2ndz=1stw+i2ndw
38 33 37 eqeq12d z=wFz=1stz+i2ndzFw=1stw+i2ndw
39 38 16 vtoclga w2Fw=1stw+i2ndw
40 16 39 eqeqan12d z2w2Fz=Fw1stz+i2ndz=1stw+i2ndw
41 1st2nd2 w2w=1stw2ndw
42 4 41 eqeqan12d z2w2z=w1stz2ndz=1stw2ndw
43 fvex 1stzV
44 fvex 2ndzV
45 43 44 opth 1stz2ndz=1stw2ndw1stz=1stw2ndz=2ndw
46 42 45 bitrdi z2w2z=w1stz=1stw2ndz=2ndw
47 32 40 46 3bitr4d z2w2Fz=Fwz=w
48 47 biimpd z2w2Fz=Fwz=w
49 48 rgen2 z2w2Fz=Fwz=w
50 dff13 F:21-1F:2z2w2Fz=Fwz=w
51 26 49 50 mpbir2an F:21-1
52 cnre wuvw=u+iv
53 oveq1 x=ux+iy=u+iy
54 oveq2 y=viy=iv
55 54 oveq2d y=vu+iy=u+iv
56 ovex u+ivV
57 53 55 1 56 ovmpo uvuFv=u+iv
58 57 eqeq2d uvw=uFvw=u+iv
59 58 2rexbiia uvw=uFvuvw=u+iv
60 52 59 sylibr wuvw=uFv
61 fveq2 z=uvFz=Fuv
62 df-ov uFv=Fuv
63 61 62 eqtr4di z=uvFz=uFv
64 63 eqeq2d z=uvw=Fzw=uFv
65 64 rexxp z2w=Fzuvw=uFv
66 60 65 sylibr wz2w=Fz
67 66 rgen wz2w=Fz
68 dffo3 F:2ontoF:2wz2w=Fz
69 26 67 68 mpbir2an F:2onto
70 df-f1o F:21-1 ontoF:21-1F:2onto
71 51 69 70 mpbir2an F:21-1 onto