Description: There is a natural one-to-one mapping from ( RR X. RR ) to CC , where we map <. x , y >. to ( x + (i x. y ) ) . In our construction of the complex numbers, this is in fact our definition_ of CC (see df-c ), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013) (Revised by Mario Carneiro, 17-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnref1o.1 | |
|
Assertion | cnref1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnref1o.1 | |
|
2 | ovex | |
|
3 | 1 2 | fnmpoi | |
4 | 1st2nd2 | |
|
5 | 4 | fveq2d | |
6 | df-ov | |
|
7 | 5 6 | eqtr4di | |
8 | xp1st | |
|
9 | xp2nd | |
|
10 | oveq1 | |
|
11 | oveq2 | |
|
12 | 11 | oveq2d | |
13 | ovex | |
|
14 | 10 12 1 13 | ovmpo | |
15 | 8 9 14 | syl2anc | |
16 | 7 15 | eqtrd | |
17 | 8 | recnd | |
18 | ax-icn | |
|
19 | 9 | recnd | |
20 | mulcl | |
|
21 | 18 19 20 | sylancr | |
22 | 17 21 | addcld | |
23 | 16 22 | eqeltrd | |
24 | 23 | rgen | |
25 | ffnfv | |
|
26 | 3 24 25 | mpbir2an | |
27 | 8 9 | jca | |
28 | xp1st | |
|
29 | xp2nd | |
|
30 | 28 29 | jca | |
31 | cru | |
|
32 | 27 30 31 | syl2an | |
33 | fveq2 | |
|
34 | fveq2 | |
|
35 | fveq2 | |
|
36 | 35 | oveq2d | |
37 | 34 36 | oveq12d | |
38 | 33 37 | eqeq12d | |
39 | 38 16 | vtoclga | |
40 | 16 39 | eqeqan12d | |
41 | 1st2nd2 | |
|
42 | 4 41 | eqeqan12d | |
43 | fvex | |
|
44 | fvex | |
|
45 | 43 44 | opth | |
46 | 42 45 | bitrdi | |
47 | 32 40 46 | 3bitr4d | |
48 | 47 | biimpd | |
49 | 48 | rgen2 | |
50 | dff13 | |
|
51 | 26 49 50 | mpbir2an | |
52 | cnre | |
|
53 | oveq1 | |
|
54 | oveq2 | |
|
55 | 54 | oveq2d | |
56 | ovex | |
|
57 | 53 55 1 56 | ovmpo | |
58 | 57 | eqeq2d | |
59 | 58 | 2rexbiia | |
60 | 52 59 | sylibr | |
61 | fveq2 | |
|
62 | df-ov | |
|
63 | 61 62 | eqtr4di | |
64 | 63 | eqeq2d | |
65 | 64 | rexxp | |
66 | 60 65 | sylibr | |
67 | 66 | rgen | |
68 | dffo3 | |
|
69 | 26 67 68 | mpbir2an | |
70 | df-f1o | |
|
71 | 51 69 70 | mpbir2an | |