Metamath Proof Explorer


Theorem cntzmhm

Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cntzmhm.z Z=CntzG
cntzmhm.y Y=CntzH
Assertion cntzmhm FGMndHomHAZSFAYFS

Proof

Step Hyp Ref Expression
1 cntzmhm.z Z=CntzG
2 cntzmhm.y Y=CntzH
3 eqid BaseG=BaseG
4 eqid BaseH=BaseH
5 3 4 mhmf FGMndHomHF:BaseGBaseH
6 3 1 cntzssv ZSBaseG
7 6 sseli AZSABaseG
8 ffvelcdm F:BaseGBaseHABaseGFABaseH
9 5 7 8 syl2an FGMndHomHAZSFABaseH
10 eqid +G=+G
11 10 1 cntzi AZSxSA+Gx=x+GA
12 11 adantll FGMndHomHAZSxSA+Gx=x+GA
13 12 fveq2d FGMndHomHAZSxSFA+Gx=Fx+GA
14 simpll FGMndHomHAZSxSFGMndHomH
15 7 ad2antlr FGMndHomHAZSxSABaseG
16 3 1 cntzrcl AZSGVSBaseG
17 16 adantl FGMndHomHAZSGVSBaseG
18 17 simprd FGMndHomHAZSSBaseG
19 18 sselda FGMndHomHAZSxSxBaseG
20 eqid +H=+H
21 3 10 20 mhmlin FGMndHomHABaseGxBaseGFA+Gx=FA+HFx
22 14 15 19 21 syl3anc FGMndHomHAZSxSFA+Gx=FA+HFx
23 3 10 20 mhmlin FGMndHomHxBaseGABaseGFx+GA=Fx+HFA
24 14 19 15 23 syl3anc FGMndHomHAZSxSFx+GA=Fx+HFA
25 13 22 24 3eqtr3d FGMndHomHAZSxSFA+HFx=Fx+HFA
26 25 ralrimiva FGMndHomHAZSxSFA+HFx=Fx+HFA
27 5 adantr FGMndHomHAZSF:BaseGBaseH
28 27 ffnd FGMndHomHAZSFFnBaseG
29 oveq2 y=FxFA+Hy=FA+HFx
30 oveq1 y=Fxy+HFA=Fx+HFA
31 29 30 eqeq12d y=FxFA+Hy=y+HFAFA+HFx=Fx+HFA
32 31 ralima FFnBaseGSBaseGyFSFA+Hy=y+HFAxSFA+HFx=Fx+HFA
33 28 18 32 syl2anc FGMndHomHAZSyFSFA+Hy=y+HFAxSFA+HFx=Fx+HFA
34 26 33 mpbird FGMndHomHAZSyFSFA+Hy=y+HFA
35 imassrn FSranF
36 27 frnd FGMndHomHAZSranFBaseH
37 35 36 sstrid FGMndHomHAZSFSBaseH
38 4 20 2 elcntz FSBaseHFAYFSFABaseHyFSFA+Hy=y+HFA
39 37 38 syl FGMndHomHAZSFAYFSFABaseHyFSFA+Hy=y+HFA
40 9 34 39 mpbir2and FGMndHomHAZSFAYFS