Metamath Proof Explorer


Theorem cofcutrtime

Description: If X is the cut of A and B and all of A and B are older than X , then (LX ) is cofinal with A and ( RX ) is coinitial with B . Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of Alling p. 125. (Contributed by Scott Fenton, 27-Sep-2024)

Ref Expression
Assertion cofcutrtime A B Old bday X A s B X = A | s B x A y L X x s y z B w R X w s z

Proof

Step Hyp Ref Expression
1 ssun1 A A B
2 sstr A A B A B Old bday X A Old bday X
3 1 2 mpan A B Old bday X A Old bday X
4 3 3ad2ant1 A B Old bday X A s B X = A | s B A Old bday X
5 4 sselda A B Old bday X A s B X = A | s B x A x Old bday X
6 simpl2 A B Old bday X A s B X = A | s B x A A s B
7 scutcut A s B A | s B No A s A | s B A | s B s B
8 6 7 syl A B Old bday X A s B X = A | s B x A A | s B No A s A | s B A | s B s B
9 8 simp2d A B Old bday X A s B X = A | s B x A A s A | s B
10 simpr A B Old bday X A s B X = A | s B x A x A
11 ovex A | s B V
12 11 snid A | s B A | s B
13 12 a1i A B Old bday X A s B X = A | s B x A A | s B A | s B
14 9 10 13 ssltsepcd A B Old bday X A s B X = A | s B x A x < s A | s B
15 simpl3 A B Old bday X A s B X = A | s B x A X = A | s B
16 14 15 breqtrrd A B Old bday X A s B X = A | s B x A x < s X
17 leftval L X = x Old bday X | x < s X
18 17 a1i A B Old bday X A s B X = A | s B x A L X = x Old bday X | x < s X
19 18 eleq2d A B Old bday X A s B X = A | s B x A x L X x x Old bday X | x < s X
20 rabid x x Old bday X | x < s X x Old bday X x < s X
21 19 20 bitrdi A B Old bday X A s B X = A | s B x A x L X x Old bday X x < s X
22 5 16 21 mpbir2and A B Old bday X A s B X = A | s B x A x L X
23 leftssno L X No
24 23 22 sseldi A B Old bday X A s B X = A | s B x A x No
25 slerflex x No x s x
26 24 25 syl A B Old bday X A s B X = A | s B x A x s x
27 breq2 y = x x s y x s x
28 27 rspcev x L X x s x y L X x s y
29 22 26 28 syl2anc A B Old bday X A s B X = A | s B x A y L X x s y
30 29 ralrimiva A B Old bday X A s B X = A | s B x A y L X x s y
31 ssun2 B A B
32 sstr B A B A B Old bday X B Old bday X
33 31 32 mpan A B Old bday X B Old bday X
34 33 3ad2ant1 A B Old bday X A s B X = A | s B B Old bday X
35 34 sselda A B Old bday X A s B X = A | s B z B z Old bday X
36 simpl3 A B Old bday X A s B X = A | s B z B X = A | s B
37 simpl2 A B Old bday X A s B X = A | s B z B A s B
38 37 7 syl A B Old bday X A s B X = A | s B z B A | s B No A s A | s B A | s B s B
39 38 simp3d A B Old bday X A s B X = A | s B z B A | s B s B
40 12 a1i A B Old bday X A s B X = A | s B z B A | s B A | s B
41 simpr A B Old bday X A s B X = A | s B z B z B
42 39 40 41 ssltsepcd A B Old bday X A s B X = A | s B z B A | s B < s z
43 36 42 eqbrtrd A B Old bday X A s B X = A | s B z B X < s z
44 rightval R X = z Old bday X | X < s z
45 44 a1i A B Old bday X A s B X = A | s B z B R X = z Old bday X | X < s z
46 45 eleq2d A B Old bday X A s B X = A | s B z B z R X z z Old bday X | X < s z
47 rabid z z Old bday X | X < s z z Old bday X X < s z
48 46 47 bitrdi A B Old bday X A s B X = A | s B z B z R X z Old bday X X < s z
49 35 43 48 mpbir2and A B Old bday X A s B X = A | s B z B z R X
50 rightssno R X No
51 50 49 sseldi A B Old bday X A s B X = A | s B z B z No
52 slerflex z No z s z
53 51 52 syl A B Old bday X A s B X = A | s B z B z s z
54 breq1 w = z w s z z s z
55 54 rspcev z R X z s z w R X w s z
56 49 53 55 syl2anc A B Old bday X A s B X = A | s B z B w R X w s z
57 56 ralrimiva A B Old bday X A s B X = A | s B z B w R X w s z
58 30 57 jca A B Old bday X A s B X = A | s B x A y L X x s y z B w R X w s z