Metamath Proof Explorer


Theorem cofcutrtime

Description: If X is the cut of A and B and all of A and B are older than X , then (LeftX ) is cofinal with A and ( RightX ) is coinitial with B . Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of Alling p. 125. (Contributed by Scott Fenton, 27-Sep-2024)

Ref Expression
Assertion cofcutrtime Could not format assertion : No typesetting found for |- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( A. x e. A E. y e. ( _Left ` X ) x <_s y /\ A. z e. B E. w e. ( _Right ` X ) w <_s z ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ssun1 AAB
2 sstr AABABOldbdayXAOldbdayX
3 1 2 mpan ABOldbdayXAOldbdayX
4 3 3ad2ant1 ABOldbdayXAsBX=A|sBAOldbdayX
5 4 sselda ABOldbdayXAsBX=A|sBxAxOldbdayX
6 simpl2 ABOldbdayXAsBX=A|sBxAAsB
7 scutcut AsBA|sBNoAsA|sBA|sBsB
8 6 7 syl ABOldbdayXAsBX=A|sBxAA|sBNoAsA|sBA|sBsB
9 8 simp2d ABOldbdayXAsBX=A|sBxAAsA|sB
10 simpr ABOldbdayXAsBX=A|sBxAxA
11 ovex A|sBV
12 11 snid A|sBA|sB
13 12 a1i ABOldbdayXAsBX=A|sBxAA|sBA|sB
14 9 10 13 ssltsepcd ABOldbdayXAsBX=A|sBxAx<sA|sB
15 simpl3 ABOldbdayXAsBX=A|sBxAX=A|sB
16 14 15 breqtrrd ABOldbdayXAsBX=A|sBxAx<sX
17 leftval Could not format ( _Left ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x
18 17 a1i Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( _Left ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x ( _Left ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x
19 18 eleq2d Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( x e. ( _Left ` X ) <-> x e. { x e. ( _Old ` ( bday ` X ) ) | x ( x e. ( _Left ` X ) <-> x e. { x e. ( _Old ` ( bday ` X ) ) | x
20 rabid xxOldbdayX|x<sXxOldbdayXx<sX
21 19 20 bitrdi Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( x e. ( _Left ` X ) <-> ( x e. ( _Old ` ( bday ` X ) ) /\ x ( x e. ( _Left ` X ) <-> ( x e. ( _Old ` ( bday ` X ) ) /\ x
22 5 16 21 mpbir2and Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x e. ( _Left ` X ) ) : No typesetting found for |- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x e. ( _Left ` X ) ) with typecode |-
23 leftssno Could not format ( _Left ` X ) C_ No : No typesetting found for |- ( _Left ` X ) C_ No with typecode |-
24 23 22 sselid ABOldbdayXAsBX=A|sBxAxNo
25 slerflex xNoxsx
26 24 25 syl ABOldbdayXAsBX=A|sBxAxsx
27 breq2 y=xxsyxsx
28 27 rspcev Could not format ( ( x e. ( _Left ` X ) /\ x <_s x ) -> E. y e. ( _Left ` X ) x <_s y ) : No typesetting found for |- ( ( x e. ( _Left ` X ) /\ x <_s x ) -> E. y e. ( _Left ` X ) x <_s y ) with typecode |-
29 22 26 28 syl2anc Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < E. y e. ( _Left ` X ) x <_s y ) : No typesetting found for |- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < E. y e. ( _Left ` X ) x <_s y ) with typecode |-
30 29 ralrimiva Could not format ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A. x e. A E. y e. ( _Left ` X ) x <_s y ) : No typesetting found for |- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A. x e. A E. y e. ( _Left ` X ) x <_s y ) with typecode |-
31 ssun2 BAB
32 sstr BABABOldbdayXBOldbdayX
33 31 32 mpan ABOldbdayXBOldbdayX
34 33 3ad2ant1 ABOldbdayXAsBX=A|sBBOldbdayX
35 34 sselda ABOldbdayXAsBX=A|sBzBzOldbdayX
36 simpl3 ABOldbdayXAsBX=A|sBzBX=A|sB
37 simpl2 ABOldbdayXAsBX=A|sBzBAsB
38 37 7 syl ABOldbdayXAsBX=A|sBzBA|sBNoAsA|sBA|sBsB
39 38 simp3d ABOldbdayXAsBX=A|sBzBA|sBsB
40 12 a1i ABOldbdayXAsBX=A|sBzBA|sBA|sB
41 simpr ABOldbdayXAsBX=A|sBzBzB
42 39 40 41 ssltsepcd ABOldbdayXAsBX=A|sBzBA|sB<sz
43 36 42 eqbrtrd ABOldbdayXAsBX=A|sBzBX<sz
44 rightval Could not format ( _Right ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X
45 44 a1i Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( _Right ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X ( _Right ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X
46 45 eleq2d Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( z e. ( _Right ` X ) <-> z e. { z e. ( _Old ` ( bday ` X ) ) | X ( z e. ( _Right ` X ) <-> z e. { z e. ( _Old ` ( bday ` X ) ) | X
47 rabid zzOldbdayX|X<szzOldbdayXX<sz
48 46 47 bitrdi Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( z e. ( _Right ` X ) <-> ( z e. ( _Old ` ( bday ` X ) ) /\ X ( z e. ( _Right ` X ) <-> ( z e. ( _Old ` ( bday ` X ) ) /\ X
49 35 43 48 mpbir2and Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < z e. ( _Right ` X ) ) : No typesetting found for |- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < z e. ( _Right ` X ) ) with typecode |-
50 rightssno Could not format ( _Right ` X ) C_ No : No typesetting found for |- ( _Right ` X ) C_ No with typecode |-
51 50 49 sselid ABOldbdayXAsBX=A|sBzBzNo
52 slerflex zNozsz
53 51 52 syl ABOldbdayXAsBX=A|sBzBzsz
54 breq1 w=zwszzsz
55 54 rspcev Could not format ( ( z e. ( _Right ` X ) /\ z <_s z ) -> E. w e. ( _Right ` X ) w <_s z ) : No typesetting found for |- ( ( z e. ( _Right ` X ) /\ z <_s z ) -> E. w e. ( _Right ` X ) w <_s z ) with typecode |-
56 49 53 55 syl2anc Could not format ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < E. w e. ( _Right ` X ) w <_s z ) : No typesetting found for |- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < E. w e. ( _Right ` X ) w <_s z ) with typecode |-
57 56 ralrimiva Could not format ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A. z e. B E. w e. ( _Right ` X ) w <_s z ) : No typesetting found for |- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A. z e. B E. w e. ( _Right ` X ) w <_s z ) with typecode |-
58 30 57 jca Could not format ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( A. x e. A E. y e. ( _Left ` X ) x <_s y /\ A. z e. B E. w e. ( _Right ` X ) w <_s z ) ) : No typesetting found for |- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( A. x e. A E. y e. ( _Left ` X ) x <_s y /\ A. z e. B E. w e. ( _Right ` X ) w <_s z ) ) with typecode |-