Step |
Hyp |
Ref |
Expression |
1 |
|
btwnsegle |
|
2 |
|
3anrev |
|
3 |
|
btwnsegle |
|
4 |
2 3
|
sylan2b |
|
5 |
|
3ancoma |
|
6 |
|
btwncom |
|
7 |
5 6
|
sylan2b |
|
8 |
|
simpl |
|
9 |
|
simpr2 |
|
10 |
|
simpr3 |
|
11 |
8 9 10
|
cgrrflx2d |
|
12 |
|
simpr1 |
|
13 |
8 12 10
|
cgrrflx2d |
|
14 |
|
seglecgr12 |
|
15 |
8 9 10 12 10 10 9 10 12 14
|
syl333anc |
|
16 |
11 13 15
|
mp2and |
|
17 |
4 7 16
|
3imtr4d |
|
18 |
1 17
|
jcad |
|
19 |
18
|
adantr |
|
20 |
|
brcolinear |
|
21 |
|
simprl |
|
22 |
8 12 9 10 21
|
btwncomand |
|
23 |
16
|
biimpa |
|
24 |
23
|
adantrl |
|
25 |
|
btwncom |
|
26 |
|
3anrot |
|
27 |
|
btwnsegle |
|
28 |
26 27
|
sylan2br |
|
29 |
25 28
|
sylbid |
|
30 |
29
|
imp |
|
31 |
30
|
adantrr |
|
32 |
|
segleantisym |
|
33 |
8 10 9 10 12 32
|
syl122anc |
|
34 |
33
|
adantr |
|
35 |
24 31 34
|
mp2and |
|
36 |
8 10 9 12 22 35
|
endofsegidand |
|
37 |
|
btwntriv1 |
|
38 |
37
|
3adant3r2 |
|
39 |
|
breq1 |
|
40 |
38 39
|
syl5ibrcom |
|
41 |
40
|
adantr |
|
42 |
36 41
|
mpd |
|
43 |
42
|
expr |
|
44 |
43
|
adantld |
|
45 |
44
|
ex |
|
46 |
7
|
biimprd |
|
47 |
46
|
a1dd |
|
48 |
|
simprl |
|
49 |
|
simprr |
|
50 |
|
3ancomb |
|
51 |
|
btwnsegle |
|
52 |
50 51
|
sylan2b |
|
53 |
52
|
imp |
|
54 |
53
|
adantrr |
|
55 |
|
segleantisym |
|
56 |
8 12 9 12 10 55
|
syl122anc |
|
57 |
56
|
adantr |
|
58 |
49 54 57
|
mp2and |
|
59 |
8 12 9 10 48 58
|
endofsegidand |
|
60 |
|
btwntriv2 |
|
61 |
60
|
3adant3r2 |
|
62 |
|
breq1 |
|
63 |
61 62
|
syl5ibrcom |
|
64 |
63
|
adantr |
|
65 |
59 64
|
mpd |
|
66 |
65
|
expr |
|
67 |
66
|
adantrd |
|
68 |
67
|
ex |
|
69 |
45 47 68
|
3jaod |
|
70 |
20 69
|
sylbid |
|
71 |
70
|
imp |
|
72 |
19 71
|
impbid |
|
73 |
72
|
ex |
|