Metamath Proof Explorer


Theorem colinbtwnle

Description: Given three colinear points A , B , and C , B falls in the middle iff the two segments to B are no longer than A C . Theorem 5.12 of Schwabhauser p. 42. (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion colinbtwnle N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C B Btwn A C A B Seg A C B C Seg A C

Proof

Step Hyp Ref Expression
1 btwnsegle N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C A B Seg A C
2 3anrev A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N B 𝔼 N A 𝔼 N
3 btwnsegle N C 𝔼 N B 𝔼 N A 𝔼 N B Btwn C A C B Seg C A
4 2 3 sylan2b N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn C A C B Seg C A
5 3ancoma A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N A 𝔼 N C 𝔼 N
6 btwncom N B 𝔼 N A 𝔼 N C 𝔼 N B Btwn A C B Btwn C A
7 5 6 sylan2b N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C B Btwn C A
8 simpl N A 𝔼 N B 𝔼 N C 𝔼 N N
9 simpr2 N A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N
10 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N
11 8 9 10 cgrrflx2d N A 𝔼 N B 𝔼 N C 𝔼 N B C Cgr C B
12 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
13 8 12 10 cgrrflx2d N A 𝔼 N B 𝔼 N C 𝔼 N A C Cgr C A
14 seglecgr12 N B 𝔼 N C 𝔼 N A 𝔼 N C 𝔼 N C 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N B C Cgr C B A C Cgr C A B C Seg A C C B Seg C A
15 8 9 10 12 10 10 9 10 12 14 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N B C Cgr C B A C Cgr C A B C Seg A C C B Seg C A
16 11 13 15 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N B C Seg A C C B Seg C A
17 4 7 16 3imtr4d N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C B C Seg A C
18 1 17 jcad N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn A C A B Seg A C B C Seg A C
19 18 adantr N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C B Btwn A C A B Seg A C B C Seg A C
20 brcolinear N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C A Btwn B C B Btwn C A C Btwn A B
21 simprl N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C A Btwn B C
22 8 12 9 10 21 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C A Btwn C B
23 16 biimpa N A 𝔼 N B 𝔼 N C 𝔼 N B C Seg A C C B Seg C A
24 23 adantrl N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C C B Seg C A
25 btwncom N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A Btwn C B
26 3anrot C 𝔼 N A 𝔼 N B 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N
27 btwnsegle N C 𝔼 N A 𝔼 N B 𝔼 N A Btwn C B C A Seg C B
28 26 27 sylan2br N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn C B C A Seg C B
29 25 28 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C C A Seg C B
30 29 imp N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C C A Seg C B
31 30 adantrr N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C C A Seg C B
32 segleantisym N C 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N C B Seg C A C A Seg C B C B Cgr C A
33 8 10 9 10 12 32 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N C B Seg C A C A Seg C B C B Cgr C A
34 33 adantr N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C C B Seg C A C A Seg C B C B Cgr C A
35 24 31 34 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C C B Cgr C A
36 8 10 9 12 22 35 endofsegidand N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C B = A
37 btwntriv1 N A 𝔼 N C 𝔼 N A Btwn A C
38 37 3adant3r2 N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn A C
39 breq1 B = A B Btwn A C A Btwn A C
40 38 39 syl5ibrcom N A 𝔼 N B 𝔼 N C 𝔼 N B = A B Btwn A C
41 40 adantr N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C B = A B Btwn A C
42 36 41 mpd N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C B Btwn A C
43 42 expr N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B C Seg A C B Btwn A C
44 43 adantld N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A B Seg A C B C Seg A C B Btwn A C
45 44 ex N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A B Seg A C B C Seg A C B Btwn A C
46 7 biimprd N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn C A B Btwn A C
47 46 a1dd N A 𝔼 N B 𝔼 N C 𝔼 N B Btwn C A A B Seg A C B C Seg A C B Btwn A C
48 simprl N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C C Btwn A B
49 simprr N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C A B Seg A C
50 3ancomb A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N C 𝔼 N B 𝔼 N
51 btwnsegle N A 𝔼 N C 𝔼 N B 𝔼 N C Btwn A B A C Seg A B
52 50 51 sylan2b N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A C Seg A B
53 52 imp N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A C Seg A B
54 53 adantrr N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C A C Seg A B
55 segleantisym N A 𝔼 N B 𝔼 N A 𝔼 N C 𝔼 N A B Seg A C A C Seg A B A B Cgr A C
56 8 12 9 12 10 55 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N A B Seg A C A C Seg A B A B Cgr A C
57 56 adantr N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C A B Seg A C A C Seg A B A B Cgr A C
58 49 54 57 mp2and N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C A B Cgr A C
59 8 12 9 10 48 58 endofsegidand N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C B = C
60 btwntriv2 N A 𝔼 N C 𝔼 N C Btwn A C
61 60 3adant3r2 N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A C
62 breq1 B = C B Btwn A C C Btwn A C
63 61 62 syl5ibrcom N A 𝔼 N B 𝔼 N C 𝔼 N B = C B Btwn A C
64 63 adantr N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C B = C B Btwn A C
65 59 64 mpd N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C B Btwn A C
66 65 expr N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C B Btwn A C
67 66 adantrd N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C B C Seg A C B Btwn A C
68 67 ex N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A B Seg A C B C Seg A C B Btwn A C
69 45 47 68 3jaod N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C B Btwn C A C Btwn A B A B Seg A C B C Seg A C B Btwn A C
70 20 69 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C A B Seg A C B C Seg A C B Btwn A C
71 70 imp N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C A B Seg A C B C Seg A C B Btwn A C
72 19 71 impbid N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C B Btwn A C A B Seg A C B C Seg A C
73 72 ex N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C B Btwn A C A B Seg A C B C Seg A C